Newman-Conway Sequence

Newman-Conway Sequence is the one which generates the following integer sequence.
1 1 2 2 3 4 4 4 5 6 7 7…

In mathematical terms, the sequence P(n) of Newman-Conway numbers is defined by recurrence relation

P(n) = P(P(n - 1)) + P(n - P(n - 1)) 

with seed values P(1) = 1 and P(2) = 1

Given a number n, print n-th number in Newman-Conway Sequence.

Examples :



Input : n = 2
Output : 1

Input : n = 10
Output : 6

Method 1 (Use Recursion) :
A simple approach is direct recursive implementation of above recurrence relation.

C++

// C++ program for n-th 
// element of Newman-Conway Sequence
#include <bits/stdc++.h>
using namespace std;
  
// Recursive Function to find the n-th element
int sequence(int n)
{
    if (n == 1 || n == 2)
        return 1;
    else
        return sequence(sequence(n - 1)) 
                + sequence(n - sequence(n - 1));
}
  
// Driver Program
int main()
{
    int n = 10;
    cout << sequence(n);
    return 0;
}

Java

// Java program to find nth
// element of Newman-Conway Sequence
import java.io.*;
  
class GFG {
      
    // Recursion to find 
    // n-th element
    static int sequence(int n)
    {
        if (n == 1 || n == 2)
            return 1;
        else
            return sequence(sequence(n - 1)) 
                  + sequence(n - sequence(n - 1));
    }
       
    // Driver Program
    public static void main(String args[])
    {
        int n = 10;
        System.out.println(sequence(n));
    }
}
  
/*This code is contributed by Nikita Tiwari.*/

Python

# Recursive function to find the n-th 
# element of sequence
def sequence(n):
    if n == 1 or n == 2:
        return 1
    else:
        return sequence(sequence(n-1)) + sequence(n-sequence(n-1));
          
# Driver code
def main():
    n = 10
    print sequence(n)
      
if __name__ == '__main__':
    main()

C#

// C# program to find nth element
// of Newman-Conway Sequence
using System;
  
class GFG {
      
    // Recursion to find 
    // n-th element
    static int sequence(int n)
    {
        if (n == 1 || n == 2)
            return 1;
        else
            return sequence(sequence(n - 1)) + sequence
                           (n - sequence(n - 1));
    }
      
    // Driver code
    public static void Main()
    {
        int n = 10;
        Console.Write(sequence(n));
    }
}
  
// This code is contributed by Nitin Mittal.

PHP

<?php
// PHP program for n-th element 
// of Newman-Conway Sequence
  
// Recursive Function to 
// find the n-th element
function sequence($n)
{
    if ($n == 1 || $n == 2)
        return 1;
    else
        return sequence(sequence($n - 1))+ 
               sequence($n - sequence($n - 1));
}
  
// Driver Code
$n = 10;
echo(sequence($n));
  
// This code is contributed by Ajit.
?>


Output :

6



Method 2 (Use Dynamic Programming) :
We can avoid repeated work done in method 1 by storing the values in the sequence in an array.

C++

// C++ program to find the n-th element of 
// Newman-Conway Sequence
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the n-th element
int sequence(int n)
{
    // Declare array to store sequence
    int f[n + 1];
    int i;
    f[0] = 0;
    f[1] = 1;
    f[2] = 1;
  
    for (i = 3; i <= n; i++) 
        f[i] = f[f[i - 1]] + f[i - f[i - 1]];    
  
    return f[n];
}
  
// Driver Program
int main()
{
    int n = 10;
    cout << sequence(n);
    return 0;
}

Java

// JAVA Code for Newman-Conway Sequence
import java.util.*;
  
class GFG {
      
    // Function to find the n-th element
    static int sequence(int n)
    {
        // Declare array to store sequence
        int f[] = new int[n + 1];
        f[0] = 0;
        f[1] = 1;
        f[2] = 1;
  
        int i;
       
        for (i = 3; i <= n; i++) 
            f[i] = f[f[i - 1]] +
                        f[i - f[i - 1]];    
       
        return f[n];
    }
      
    /* Driver program to test above function */
    public static void main(String[] args) 
    {
         int n = 10;
         System.out.println(sequence(n));
  
    }
}
  
// This code is contributed by Arnav Kr. Mandal.

Python

''' Python program to find the n-th element of 
    Newman-Conway Sequence'''
  
# To declare array import module array
import array
def sequence(n):
    f = array.array('i', [0, 1, 1])
  
    # To store values of sequence in array
    for i in range(3, n + 1):
        r = f[f[i-1]]+f[i-f[i-1]]
        f.append(r);
  
    return r
  
# Driver code
def main():
    n = 10
    print sequence(n)
      
if __name__ == '__main__':
    main()

C#

// C# Code for Newman-Conway Sequence
using System;
  
class GFG {
      
    // Function to find the n-th element
    static int sequence(int n)
    {
        // Declare array to store sequence
        int []f = new int[n + 1];
        f[0] = 0;
        f[1] = 1;
        f[2] = 1;
  
        int i;
      
        for (i = 3; i <= n; i++) 
            f[i] = f[f[i - 1]] +
                   f[i - f[i - 1]]; 
      
        return f[n];
    }
      
    // Driver Code
    public static void Main() 
    {
        int n = 10;
        Console.Write(sequence(n));
  
    }
}
  
// This code is contributed by Nitin Mittal.

PHP

<?php
// PHP program to find the n-th element  
// of Newman-Conway Sequence
  
// Function to find 
// the n-th element
function sequence($n)
{
      
    // Declare array to 
    // store sequence
    $i;
    $f[0] = 0;
    $f[1] = 1;
    $f[2] = 1;
  
    for ($i = 3; $i <= $n; $i++) 
        $f[$i] = $f[$f[$i - 1]] + 
                 $f[$i - $f[$i - 1]]; 
  
    return $f[$n];
}
  
// Driver Code
$n = 10;
echo(sequence($n));
  
// This code is contributed by Ajit.
?>


Output :

6

Time Complexity : O(n)

References : https://archive.lib.msu.edu/crcmath/math/math/n/n078.htm



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : nitin mittal, jit_t