Print n terms of Newman-Conway Sequence

Newman-Conway numbers is the one which generates the following integer sequence.
1 1 2 2 3 4 4 4 5 6 7 7….. and follows below recursive formula.

P(n) = P(P(n - 1)) + P(n - P(n - 1))

Given a number n then print n terms of Newman-Conway Sequence

Examples:

Input : 13
Output : 1 1 2 2 3 4 4 4 5 6 7 7 8

Input : 20
Output : 1 1 2 2 3 4 4 4 5 6 7 7 8 8 8 8 9 10 11 12 


C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to print n terms 
// of Newman-Conway Sequence
#include <bits/stdc++.h>
using namespace std;
  
// Function to find 
// the n-th element
void sequence(int n) 
{
    // Declare array to store sequence
    int f[n + 1];
    f[0] = 0;
    f[1] = 1;
    f[2] = 1;
      
    cout << f[1] << " " << f[2] << " ";
      
    for (int i = 3; i <= n; i++) {
        f[i] = f[f[i - 1]] + f[i - f[i - 1]];        
        cout << f[i] << " ";
    }
}
  
// Driver Program
int main()
{    
    int n = 13;    
    sequence(n);    
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to print n terms
// of Newman-Conway Sequence
  
class GFG 
{
    // Function to find 
    // the n-th element
    public static void sequence(int n) 
    {
        // Declare array to store sequence
        int f[] = new int[n + 1];
          
        f[0] = 0;
        f[1] = 1;
        f[2] = 1;
          
        System.out.print( f[1] + " " + f[2] + " ");
        for (int i = 3; i <= n; i++) 
        {
            f[i] = f[f[i - 1]] + f[i - f[i - 1]];     
            System.out.print(f[i] + " ");
        }
    }
      
    //Driver code
    public static void main(String []args)
    {
        int n = 13 ;
        sequence(n);
    }
  
}
  
  
// This program is contributed 
// by upendra singh bartwal

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program to print n terms
# of Newman-Conway Sequence
  
def sequence(n):
  
    # Function to find
    # the n-th element
    # Declare array to store sequence
    f = [0, 1, 1]
  
    print(f[1], end=" "),
    print(f[2], end=" "),
    for i in range(3,n+1):
        f.append( f[f[i - 1]] + f[i - f[i - 1]])
        print(f[i], end=" "),
          
# driver code
n = 13
sequence(n)
  
# This code is contributed
# by upendra singh bartwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to print n terms
// of Newman-Conway Sequence
using System;
class GFG 
{
    // Function to find 
    // the n-th element
    public static void sequence(int n) 
    {
        // Declare array to store sequence
        int []f = new int[n + 1];
          
        f[0] = 0;
        f[1] = 1;
        f[2] = 1;
          
        Console.Write( f[1] + " " + f[2] + " ");
        for (int i = 3; i <= n; i++) 
        {
            f[i] = f[f[i - 1]] + f[i - f[i - 1]]; 
            Console.Write(f[i] + " ");
        }
    }
      
    // Driver code
    public static void Main()
    {
        int n = 13 ;
        sequence(n);
    }
  
}
  
  
// This program is contributed 
// by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to print n terms 
// of Newman-Conway Sequence
  
// Function to find 
// the n-th element
function sequence($n
{
      
    // Declare array to 
    // store sequence
    $f=array(0);
  
    $f[0] = 0;
    $f[1] = 1;
    $f[2] = 1;
      
    echo $f[1] , " " , $f[2] , " ";
      
    for ($i = 3; $i <= $n; $i++) 
    {
        $f[$i] = $f[$f[$i - 1]] + 
                 $f[$i - $f[$i - 1]];     
        echo $f[$i], " ";
    }
}
  
// Driver Code
    $n = 13; 
    sequence($n); 
    return 0;
}
  
// This code is contributed by nitin mittal.
?>

chevron_right



Output :

1 1 2 2 3 4 4 4 5 6 7 7 8 


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : nitin mittal