# Print n terms of Newman-Conway Sequence

Newman-Conway numbers is the one which generates the following integer sequence.
1 1 2 2 3 4 4 4 5 6 7 7….. and follows below recursive formula.

```P(n) = P(P(n - 1)) + P(n - P(n - 1))
```

Given a number n then print n terms of Newman-Conway Sequence

Examples:

```Input : 13
Output : 1 1 2 2 3 4 4 4 5 6 7 7 8

Input : 20
Output : 1 1 2 2 3 4 4 4 5 6 7 7 8 8 8 8 9 10 11 12
```

## C++

 `// C++ Program to print n terms  ` `// of Newman-Conway Sequence ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find  ` `// the n-th element ` `void` `sequence(``int` `n)  ` `{ ` `    ``// Declare array to store sequence ` `    ``int` `f[n + 1]; ` `    ``f = 0; ` `    ``f = 1; ` `    ``f = 1; ` `     `  `    ``cout << f << ``" "` `<< f << ``" "``; ` `     `  `    ``for` `(``int` `i = 3; i <= n; i++) { ` `        ``f[i] = f[f[i - 1]] + f[i - f[i - 1]];         ` `        ``cout << f[i] << ``" "``; ` `    ``} ` `} ` ` `  `// Driver Program ` `int` `main() ` `{     ` `    ``int` `n = 13;     ` `    ``sequence(n);     ` `    ``return` `0; ` `} `

## Java

 `// Java Program to print n terms ` `// of Newman-Conway Sequence ` ` `  `class` `GFG  ` `{ ` `    ``// Function to find  ` `    ``// the n-th element ` `    ``public` `static` `void` `sequence(``int` `n)  ` `    ``{ ` `        ``// Declare array to store sequence ` `        ``int` `f[] = ``new` `int``[n + ``1``]; ` `         `  `        ``f[``0``] = ``0``; ` `        ``f[``1``] = ``1``; ` `        ``f[``2``] = ``1``; ` `         `  `        ``System.out.print( f[``1``] + ``" "` `+ f[``2``] + ``" "``); ` `        ``for` `(``int` `i = ``3``; i <= n; i++)  ` `        ``{ ` `            ``f[i] = f[f[i - ``1``]] + f[i - f[i - ``1``]];      ` `            ``System.out.print(f[i] + ``" "``); ` `        ``} ` `    ``} ` `     `  `    ``//Driver code ` `    ``public` `static` `void` `main(String []args) ` `    ``{ ` `        ``int` `n = ``13` `; ` `        ``sequence(n); ` `    ``} ` ` `  `} ` ` `  ` `  `// This program is contributed  ` `// by upendra singh bartwal `

## Python3

 `# Python Program to print n terms ` `# of Newman-Conway Sequence ` ` `  `def` `sequence(n): ` ` `  `    ``# Function to find ` `    ``# the n-th element ` `    ``# Declare array to store sequence ` `    ``f ``=` `[``0``, ``1``, ``1``] ` ` `  `    ``print``(f[``1``], end``=``" "``), ` `    ``print``(f[``2``], end``=``" "``), ` `    ``for` `i ``in` `range``(``3``,n``+``1``): ` `        ``f.append( f[f[i ``-` `1``]] ``+` `f[i ``-` `f[i ``-` `1``]]) ` `        ``print``(f[i], end``=``" "``), ` `         `  `# driver code ` `n ``=` `13` `sequence(n) ` ` `  `# This code is contributed ` `# by upendra singh bartwal `

## C#

 `// C# Program to print n terms ` `// of Newman-Conway Sequence ` `using` `System; ` `class` `GFG  ` `{ ` `    ``// Function to find  ` `    ``// the n-th element ` `    ``public` `static` `void` `sequence(``int` `n)  ` `    ``{ ` `        ``// Declare array to store sequence ` `        ``int` `[]f = ``new` `int``[n + 1]; ` `         `  `        ``f = 0; ` `        ``f = 1; ` `        ``f = 1; ` `         `  `        ``Console.Write( f + ``" "` `+ f + ``" "``); ` `        ``for` `(``int` `i = 3; i <= n; i++)  ` `        ``{ ` `            ``f[i] = f[f[i - 1]] + f[i - f[i - 1]];  ` `            ``Console.Write(f[i] + ``" "``); ` `        ``} ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 13 ; ` `        ``sequence(n); ` `    ``} ` ` `  `} ` ` `  ` `  `// This program is contributed  ` `// by vt_m. `

## PHP

 ` `

Output :

```1 1 2 2 3 4 4 4 5 6 7 7 8
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : nitin mittal