Juggler Sequence

Juggler Sequence is a series of integer number in which the first term starts with a positive integer number a and the remaining terms are generated from the immediate previous term using the below recurrence relation :
 a_{k+1}=\begin{Bmatrix} \lfloor a_{k}^{1/2} \rfloor & for \quad even \quad a_k\\  \lfloor a_{k}^{3/2} \rfloor & for \quad odd \quad a_k \end{Bmatrix}
Juggler Sequence starting with number 3:
5, 11, 36, 6, 2, 1

Juggler Sequence starting with number 9:
9, 27, 140, 11, 36, 6, 2, 1

Given a number n we have to print the Juggler Sequence for this number as the first term of the sequence.
Examples:

Input: 9
Output: 9, 27, 140, 11, 36, 6, 2, 1
We start with 9 and use above formula to get
next terms.

Input: 6
Output: 6, 2, 1



C

// C implementation of Juggler Sequence
#include<stdio.h>
#include<math.h>
  
// This function prints the juggler Sequence
void printJuggler(int n)
{
    int a = n;
  
    // print the first term
    printf("%d ", a);
  
    // calculate terms until last term is not 1
    while (a != 1)
    {
        int b = 0;
  
        // Check if previous term is even or odd
        if (a%2 == 0)
  
            // calculate next term
            b  = floor(sqrt(a));
  
        else
  
            // for odd previous term calculate
            // next term
            b = floor(sqrt(a)*sqrt(a)*sqrt(a));
  
        printf("%d ", b);
        a = b;
    }
}
  
//driver program to test above function
int main()
{
    printJuggler(3);
    printf("\n");
    printJuggler(9);
    return 0;
}

Java

// Java implementation of Juggler Sequence
import java.io.*;
import java.math.*;
  
class GFG {
       
    // This function prints the juggler Sequence
    static void printJuggler(int n)
    {
        int a = n;
    
       // print the first term
       System.out.print(a+" ");
    
      // calculate terms until last term is not 1
       while (a != 1)
       {
          int b = 0;
     
          // Check if previous term is even or odd
          if (a%2 == 0)
     
             // calculate next term
                b  = (int)Math.floor(Math.sqrt(a));
    
          else
    
            // for odd previous term calculate
            // next term
                b =(int) Math.floor(Math.sqrt(a) *
                               Math.sqrt(a) * Math.sqrt(a));
    
          System.out.print( b+" ");
          a = b;
        }
    }
  
// Driver program to test above function
public static void main (String[] args) {
    printJuggler(3);
    System.out.println();
    printJuggler(9);
    }
}
   
//This code is contributed by Nikita Tiwari.

Python

import math
  
#This function prints the juggler Sequence
def printJuggler(n) :
    a = n
      
    # print the first term
    print a,
      
    # calculate terms until last term is not 1
    while (a != 1) :
        b = 0
          
        # Check if previous term is even or odd
        if (a%2 == 0) :
              
            # calculate next term
            = (int)(math.floor(math.sqrt(a)))
   
        else :
            # for odd previous term calculate
            # next term
            b = (int) (math.floor(math.sqrt(a)*math.sqrt(a)*
                                         math.sqrt(a)))
   
        print b,
        a = b
  
printJuggler(3)
print
printJuggler(9)
  
# This code is contributed by Nikita Tiwari.

C#

// C# implementation of Juggler Sequence
using System;
  
class GFG {
      
    // This function prints the juggler Sequence
    static void printJuggler(int n)
    {
        int a = n;
  
    // print the first term
    Console.Write(a+" ");
  
    // calculate terms until last term is not 1
    while (a != 1)
    {
        int b = 0;
      
        // Check if previous term is even or odd
        if (a%2 == 0)
      
            // calculate next term
                b = (int)Math.Floor(Math.Sqrt(a));
  
        else
  
            // for odd previous term calculate
            // next term
                b =(int) Math.Floor(Math.Sqrt(a) *
                     Math.Sqrt(a) * Math.Sqrt(a));
  
        Console.Write( b+" ");
        a = b;
        }
    }
  
// Driver Code
public static void Main () {
    printJuggler(3);
    Console.WriteLine();
    printJuggler(9);
    }
}
  
// This code is contributed by Nitin Mittal

PHP

<?php
// PHP implementation of 
// Juggler Sequence
  
// function prints the
// juggler Sequence
function printJuggler($n)
{
    $a = $n;
  
    // print the first term
    echo($a . " ");
  
    // calculate terms until 
    // last term is not 1
    while ($a != 1)
    {
        $b = 0;
  
        // Check if previous
        // term is even or odd
        if ($a % 2 == 0)
  
            // calculate next term
            $b = floor(sqrt($a));
  
        else
  
            // for odd previous term
            // calculate next term
            $b = floor(sqrt($a) * sqrt($a) *
                                  sqrt($a));
  
        echo($b . " ");
        $a = $b;
    }
}
  
// Driver Code
printJuggler(3);
echo("\n");
printJuggler(9);
  
// This code is contributed by Ajit.
?>


Output:

3 5 11 36 6 2 1 
9 27 140 11 36 6 2 1

Important Points:

  • The terms in Juggler Sequence first increases to a peak value and then starts decreasing.
  • The last term in Juggler Sequence is always 1.

Reference:
https://en.wikipedia.org/wiki/Juggler_sequence
This article is contributed by Harsh Agarwal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : nitin mittal, jit_t




Practice Tags :
Article Tags :

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

Recommended Posts:



1 Average Difficulty : 1/5.0
Based on 5 vote(s)






User Actions