Plot a pie chart in Python using Matplotlib

A Pie Chart is a circular statistical plot that can display only one series of data. The area of the chart is the total percentage of the given data. The area of slices of the pie represents the percentage of the parts of the data. The slices of pie are called wedges. The area of the wedge is determined by the length of the arc of the wedge. The area of a wedge represents the relative percentage of that part with respect to whole data. Pie charts are commonly used in business presentations like sales, operations, survey results, resources, etc as they provide a quick summary.

Creating Pie Chart

Matplotlib API has pie() function in its pyplot module which create a pie chart representing the data in an array.

Syntax: matplotlib.pyplot.pie(data, explode=None, labels=None, colors=None, autopct=None, shadow=False)

Parameters:
data represents the array of data values to be plotted, the fractional area of each slice is represented by data/sum(data). If sum(data)<1, then the data values returns the fractional area directly, thus resulting pie will have empty wedge of size 1-sum(data).
labels is a list of sequence of strings which sets the label of each wedge.
color attribute is used to provide color to the wedges.
autopct is a string used to label the wedge with their numerical value.
shadow is used to create shadow of wedge.

Let’s create a simple pie chart using the pie() function:



Example:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import libraries
from matplotlib import pyplot as plt
import numpy as np
  
  
# Creating dataset
cars = ['AUDI', 'BMW', 'FORD',
        'TESLA', 'JAGUAR', 'MERCEDES']
  
data = [23, 17, 35, 29, 12, 41]
  
# Creating plot
fig = plt.figure(figsize =(10, 7))
plt.pie(data, labels = cars)
  
# show plot
plt.show()

chevron_right


Output:
pie-chart-python

Customizing Pie Chart

A pie chart can be customized on the basis several aspects. The startangle attribute rotates the plot by the specified degrees in counter clockwise direction performed on x-axis of pie chart. shadow attribute accepts boolean value, if its true then shadow will appear below the rim of pie. Wedges of the pie can be customized using wedgeprop which takes Python dictionary as parameter with name values pairs denoting the wedge properties like linewidth, edgecolor, etc. By setting frame=True axes frame is drawn aroun the pie chart.autopct controls how the percentages are displayed on the wedges. Let us try to modify the above plot:

Example 1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import libraries
import numpy as np
import matplotlib.pyplot as plt
  
  
# Creating dataset
cars = ['AUDI', 'BMW', 'FORD'
        'TESLA', 'JAGUAR', 'MERCEDES']
  
data = [23, 17, 35, 29, 12, 41]
  
  
# Creating explode data
explode = (0.1, 0.0, 0.2, 0.3, 0.0, 0.0)
  
# Creating color parameters
colors = ( "orange", "cyan", "brown",
          "grey", "indigo", "beige")
  
# Wedge properties
wp = { 'linewidth' : 1, 'edgecolor' : "green" }
  
# Creating autocpt arguments
def func(pct, allvalues):
    absolute = int(pct / 100.*np.sum(allvalues))
    return "{:.1f}%\n({:d} g)".format(pct, absolute)
  
# Creating plot
fig, ax = plt.subplots(figsize =(10, 7))
wedges, texts, autotexts = ax.pie(data, 
                                  autopct = lambda pct: func(pct, data),
                                  explode = explode, 
                                  labels = cars,
                                  shadow = True,
                                  colors = colors,
                                  startangle = 90,
                                  wedgeprops = wp,
                                  textprops = dict(color ="magenta"))
  
# Adding legend
ax.legend(wedges, cars,
          title ="Cars",
          loc ="center left",
          bbox_to_anchor =(1, 0, 0.5, 1))
  
plt.setp(autotexts, size = 8, weight ="bold")
ax.set_title("Customizing pie chart")
  
# show plot
plt.show()

chevron_right


Output:
pie-chart-python

Example 2: Creating a Nested Pie Chart

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import libraries
from matplotlib import pyplot as plt
import numpy as np
  
  
# Creating dataset
size = 6
cars = ['AUDI', 'BMW', 'FORD'
        'TESLA', 'JAGUAR', 'MERCEDES']
  
data = np.array([[23, 16], [17, 23],
                 [35, 11], [29, 33],
                 [12, 27], [41, 42]])
  
# normalizing data to 2 pi
norm = data / np.sum(data)*2 * np.pi
  
# obtaining ordinates of bar edges
left = np.cumsum(np.append(0
                           norm.flatten()[:-1])).reshape(data.shape)
  
# Creating color scale
cmap = plt.get_cmap("tab20c")
outer_colors = cmap(np.arange(6)*4)
inner_colors = cmap(np.array([1, 2, 5, 6, 9,
                              10, 12, 13, 15,
                              17, 18, 20 ]))
  
# Creating plot
fig, ax = plt.subplots(figsize =(10, 7),
                       subplot_kw = dict(polar = True))
  
ax.bar(x = left[:, 0],
       width = norm.sum(axis = 1),
       bottom = 1-size,
       height = size,
       color = outer_colors, 
       edgecolor ='w',
       linewidth = 1,
       align ="edge")
  
ax.bar(x = left.flatten(),
       width = norm.flatten(),
       bottom = 1-2 * size,
       height = size,
       color = inner_colors,
       edgecolor ='w',
       linewidth = 1,
       align ="edge")
  
ax.set(title ="Nested pie chart")
ax.set_axis_off()
  
# show plot
plt.show()

chevron_right


Output:
pie-chart-python




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.


Article Tags :

1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.