Skip to content
Related Articles

Related Articles

Improve Article

How to Turn Off the Axes for Subplots in Matplotlib?

  • Last Updated : 03 Jan, 2021

In this article, we are going to discuss how to turn off the axes of subplots using matplotlib module. We can turn off the axes for subplots and plots using the below methods:

Method 1: Using matplotlib.axes.Axes.axis()

To turn off the axes for subplots, we will matplotlib.axes.Axes.axis() method here.

Python3




# import required modules
import matplotlib.pyplot as plt 
import matplotlib.tri as mtri 
import numpy as np 
      
# assign data    
x = np.asarray([0, 1, 2, 3, 0.5
                1.5, 2.5, 1, 2
                1.5]) 
  
y = np.asarray([0, 0, 0, 0, 1.0
                1.0, 1.0, 2, 2
                3.0]) 
  
triangles = [[0, 1, 4], [1, 5, 4], 
            [2, 6, 5], [4, 5, 7], 
            [5, 6, 8], [5, 8, 7], 
            [7, 8, 9], [1, 2, 5], 
            [2, 3, 6]] 
  
# depict illsutration
triang = mtri.Triangulation(x, y, triangles) 
z = np.cos(1.5 * x) * np.cos(1.5 * y) 
      
fig, axs = plt.subplots() 
axs.tricontourf(triang, z) 
axs.triplot(triang, 'go-', color ='white'
  
# turn off the axes
axs.set_axis_off()
  
# assign title
axs.set_title('Triangle illustration'
  
plt.show() 

Output:



Here, we turn off axes using the axis(“off”) statement.  

Method 2: Using matplotlib.axes.Axes.set_axis_off()

We use matplotlib.axes.Axes.set_axis_off() to turn the x-and y-pivot off influencing the axis lines, ticks, ticklabels, network and axis marks as well.

Python3




# import required modules 
import matplotlib.pyplot as plt 
import numpy as np 
      
# time series data 
geeksx = np.array([24.40, 110.25, 20.05
                22.00, 61.90, 7.80
                15.00]) 
  
geeksy = np.array([24.40, 110.25, 20.05
                22.00, 61.90, 7.80
                15.00]) 
      
# depict illustration    
fig, ax = plt.subplots() 
ax.xcorr(geeksx, geeksy, maxlags = 6
        color ="green"
  
# turn off the axes
ax.set_axis_off() 
  
# assign title
ax.set_title('Time series graph'
plt.show() 

Output:

Method 3: Using matplotlib.pyplot.axis()



In a visualization, if the figure has a single plot in it, we can turn off the axes for subplots by making look like a contention to the matplotlib.pyplot.axis() technique. If the figure contains different subplots, this technique just turns off axes for the last subplot.

Python3




# importing module
import matplotlib.pyplot as plt
  
# assigning x and y coordinates
x = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
y = []
  
for i in range(len(x)):
    y.append(max(0, x[i]))
  
# depicting the visualization
ax = plt.plot(x, y, color='green')
  
# turn off the axes
plt.axis('off')
  
# displaying the title
plt.title("ReLU function graph")
  
plt.show()

Output:

Here, we turn off axes using the plt.axis(“off”) statement.  

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :