Open In App

Surface Area and Volume of 3D Shapes

Last Updated : 01 Mar, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

We see solids everywhere where we look. Most of the time these solids are either in the shape of a cube, cylinder, and cone, etc., or in the shape that combines these shapes. It is essential in many of the real-life problems for us to know how to calculate the area and volume of these shapes. For example, a painter might want to know the area he/she has to paint for the given shape. Similarly, before making a metal sphere ball, we need to know how much material will be required. All these things require some knowledge of the volume and surface areas of the basic shapes. Let’s see them in detail. 

Surface Area and Volume of Solid Shapes 

The surface area is the area that describes the amount of material used to cover a geometric solid while the volume can be defined as a measure of how much space the solid takes. It is essential to know the formulas for calculating the areas and volumes for basic shapes. Let’s look at the surface of the following shapes: 

Cuboid 

The figure below shows the cuboid shape, this is the shape of our boxes, cartons, etc, our goal is to derive the formulas to calculate its surface area and the volume. Let’s say the length of the cuboid is “l”, the breadth is “b” and the height is “h”. 

Surface Area of Cuboid

To calculate the surface area of the cube, let’s open it up like in the figure given below. Now the figure shows the flattened cuboid. It has 6 rectangles which correspond to the six faces of the cuboid. For the surface area of the cube, we need to find out the total area of all the rectangles. 

Total surface area = Area of rectangle 1 + Area of rectangle 2 + Area of rectangle 3  + Area of rectangle 4 + Area of rectangle 5 + Area of rectangle 6

⇒ (l × h) + (l × b) + (l × h) + (l × b) + (b × h) + (b × h) 

⇒ 2(lh + lb + bh) 

Thus, the surface area of cuboid = 2 (lh + lb + bh) 

Volume of Cuboid

We know that the volume of a region is given by its magnitude, that is how much space it takes. 

The volume of a cuboid = base area x height 

                                       = l × b × h 

                                       = lbh

Cube 

Cube is a solid shape with has all of its sides of equal length. We know that a cube is just a cuboid with all the sides equal. Our goal is to derive the formulas for calculating the surface area and the volume of the cube. The figure below represents a cube. Notice that all the sides are equal, and it looks similar to the cuboid. A cube is basically a cuboid that has all of its sides of equal length. That is, 

l = b = h = a

Where “a” is the length of the side of the cube. 

Surface Area of Cube

Thus, putting this in the above formula 

Surface area of cube = 2(a2 + a2 + a2

⇒ 2(3a2) = 6a2

Volume of Cube

Similar to above method, let’s substitute the length of side in the formula. 

Volume = lbh 

             = aaa 

             = a3

Right Circular Cylinder 

The cola cans we use are an example of a right circular cylinder. It can also be found in other places in our lives, for example, our pens also look similar to cylinders. The figure below shows a cylinder and its unrolled version which will be used for calculating surface area. Let’s say the height of the cylinder is “h” and its radius is “r”.

Surface Area of Cylinder

The figure above shows a cylinder when it is unrolled. It becomes easy to find its surface area once it is unrolled. Notice that the cylinder once unrolled looks like a rectangle.  The breadth of the rectangle will be given by “h” but the length is given by the circumference of the cylinder. 

Circumference of the cylinder = 2πr

Area of the rectangle = 2πrh

Thus, the Surface area of the Right Circular Cylinder = 2πrh

Total surface area of the right circular cylinder = Surface Area of the cylinder + Area of base 

                                                                               = 2πrh + 2πr2 = 2πr(r+h)

Volume of Cylinder 

Volume of cylinder = base area x height 

                                 = πr2 × h

                                 = πr2 h

Sphere 

A sphere is a three-dimensional figure (solid figure), which is made up of all points in the space, which lie at a constant distance called the radius, from a fixed point called the Centre of the sphere. The figure below shows a sphere, and its flattened version when it is cut. This is used to calculate the surface area of the sphere. 

Surface Area of a Sphere

As similar to the above cases, we will cut the sphere and flatten it. 

In the figure, we can see that when a sphere is cut, it generates an area equivalent to four spheres. 

Thus, the surface area of the sphere = 4πr2

Volume of the Sphere 

This formula is proved experimentally, so we cannot present any proof here. 

Volume of Sphere = \frac{4}{3}\pi r^3

Cone

A cone is a three-dimensional figure having the base as a circle and the height tapers and meets at a point in the end. Apex is the name of the pointed end of the cone, we see a lot of shapes in form of a cone in our everyday life, for example, the ice cream is in the shape of a cone, etc.

In the figure below, the cone has a radius of “r”, and a height of “h”. 

Surface Area of Cone

The surface area of the cone is given by 

Curved surface Area of cone = \frac{1}{2} \times l \times 2\pi r = \pi rl

Where, l = \sqrt{h^2 + r^2}

Volume of Cone

The volume of the cone is given by, 

Volume of Cone = \frac{1}{3}\pi r^2 h

Hemisphere

Imagine a plane dividing the sphere in two equal parts, each part is known as a Hemisphere. The term hemisphere is used to explain the different parts on the globe, Northern Hemisphere, Southern Hemisphere, eastern hemisphere, western hemisphere. 

Surface Area of a Hemisphere

Since a Hemisphere is half a sphere, The surface area will be half as well but along with that, a base in the shape of a circle is also visible that too is included in the surface area of the hemisphere.

Therefore, the surface area of a hemisphere= 2πr2+πr2

= 3πr2

Volume of a Hemisphere

The Volume of the hemisphere will be half the volume of sphere.

Volume of hemisphere= \frac{4}{3}\pi r^3

Prism

A Prism is a three-dimensional figure having two bases facing each other, these bases can be the shape of a triangle, rectangle, or any polygon. The material of prism is mostly fluorite, glass, plastic.

The base of the prism can be regular or irregular, if the base is irregular, it is called as irregular prism. If the base of the prism is regular, the prism is a regular prism.

Surface area of the Prism

Let’s look at the surface area of the Triangular prism,

Surface area of the prism= 2(area of triangular bases) + (area of rectangle with base b and length l) +2(area of rectangle with side s and length l).

Surface area of the Prism= 2(1/2 ×b× h) +2(s× l) +(b×l)

= (b×h) + 2(s×l) + (l×b)

Volume of the prism

The volume of the prism is the area of the square multiplied by the height/length of the prism,

Volume of Prism= 1/2 bhl

Let’s see some sample problems on these concepts 

Sample Problems

Question 1: Find the volume and surface area of a cube whose side is a = 10cm. 

Solution: 

We know the formulas for surface areas and volume. 

Surface Area = 6a2

                             = 6(10)2 {Given a = 10cm} 

                             = 6 (100) 

                       = 600 cm2

Volume of the cube = a3

                                  = (10)3 

                                  = 1000 cm3  

Question 2: Find the volume and surface area of the water tank which is in the shape of a cylinder with a radius of 10m and height of 40m. 

Solution: 

We know the formulas for surface areas and volume for cylinder. 

r = 10 and h =40. 

Surface Area of the cylinder = Curved Surface Area + Area of bases 

\\ = 2 \pi rh  + 2\pi r^2 \\ = 2 \pi r (r + h) \\ = 2 \pi (10 )(10 + 40) \\ = 2 \pi (10)(50) \\ = 2 \pi (500) \\ = 1000 \pi = 3142.8 \text{ m}^2

Volume of the Cylinder,

\\ = \pi r^2h  \\ = \pi (10)^2 (40) \\ = \pi 4000\\ = 4000 \pi \\ = 4000 (3.1428) \\ = 1242.8 \text{ m}^3

Question 3: Find the volume and surface area of an ice cream cone whose radius is 3cm and height is 4cm. 

Solution: 

An ice cream cone is basically a cone. We need to find the area and the volume for that cone. Since the cone is not closed from the top, we only need to find the curved surface area. 

Surface Area of cone,

= \pi rl \\ = \pi r \times \sqrt{r^2 + h^2} \\ = \pi 3 \times \sqrt{3^2 + 4^2} \\ = \pi 3 \times \sqrt{25} \\ = \pi (3)(5) \\ = 15\pi \\ = 15(3.14) \\ = 47.10 \text{ cm}^2

Volume of the cone,

= \frac{1}{3}\pi r^2 h \\ = \frac{1}{3} \pi (3)^2(4)\\ = \frac{1}{3} \pi 9 \times 4 \\ = 12\pi \\ = 12(3.14) \\ = 37.68 \text{ cm}^2

Question 4: Find the volume and surface area of the sphere whose radius is 10cm. 

Solution: 

Given r = 10cm. 

Surface Area

\\ = 4\pi r^2 \\ = 4 \pi (10)^2 \\ = 400\pi = 1256 \text{ cm}^2

Volume

\\ = \frac{4}{3}\pi r^3 \\ = \frac{4}{3} \pi 10^3 \\ = \frac{4}{3} (3.14) 1000 \\ = \frac{12.56}{3} 1000 \\ = 418.6 \text{ cm}^3

Question 5: Find the surface area of the hemisphere with radius 7cm, also find the volume.

Solution: 

Surface area of the hemisphere= 3\pi r^2

= 3× 22/7× (7×7)

=462 cm2

Volume of hemisphere

\\ = \frac{4}{3}\pi r^3

\\ = \frac{4}{3}\pi 7^3

= 1437.333 cm3

Question 6: Find the surface area of a triangular prism mentioned in the figure below,

Solution:

Surface area of the Prism = (b×h) + 2(l×s)+ (l×b)

= (5×5)+ 2(7×10) +(5×10)

= 25+ 140+ 50

= 75+ 140

= 215cm2



Previous Article
Next Article

Similar Reads

Class 9 RD Sharma Solutions - Chapter 18 Surface Area and Volume of a Cuboid and Cube - Exercise 18.2 | Set 2
Question 14. The dimensions of a cinema hall are 100 m, 50 m, 18 m. How many persons can sit in the hall, if each person requires 150 m3 of air? Solution: Length of hall = 100 m Breadth of hall = 50 m Height of hall = 18 m So, the Volume of the hall = l × b × h = 100 × 50 × 18 = 90000 m3 Also, the volume of air required per person = 150 m3 So we ca
13 min read
Class 9 RD Sharma Solutions - Chapter 18 Surface Area and Volume of a Cuboid and Cube - Exercise 18.1
Question 1: Find the lateral surface area and total surface area of a cuboid of length 80 cm, breadth 40 cm, and height 20 cm. Solution: Given, dimensions of cuboid are: Length(l) = 80 cm Breadth(b) = 40 cm Height(h) = 20 cm Formula for total surface area of cuboid: TSA(Cuboid) = 2[lb + bh + hl] Now, substituting the given values of in the formula,
7 min read
Class 9 RD Sharma Solutions- Chapter 18 Surface Area and Volume of a Cuboid and Cube - Exercise 18.2 | Set 1
Question 1. A cuboidal water tank is 6 m long, 5 m wide, and 4.5 m deep. How many liters of water can it hold? Solution: Given, the length of water tank = 6 m The breadth of water tank = 5 m The height of water tank = 4.5 m The quantity of water that tank can hold = Volume of Cuboid = length × breadth × height = 6 × 5 × 4.5 = 135 m3 As we know 1 m3
8 min read
Class 8 RD Sharma Solutions - Chapter 22 Mensuration III (Surface Area And Volume Of Right Circular Cylinder) - Exercise 22.1 | Set 1
Question 1: Find the curved surface area and total surface area of a cylinder, the diameter of whose base is 7 cm and height is 60 cm. Solution: The details given about cylinder are: Diameter of base of a cylinder = 7 cm So, radius = (7/2) Height of cylinder = 60 cm Curved surface area of a cylinder = 2 * (22/7) * r * h = 2 * (22/7) * (7/2) * 60 =
6 min read
Class 9 RD Sharma Solutions - Chapter 19 Surface Area And Volume of a Right Circular Cylinder - Exercise 19.1
Question 1: Curved surface area of a right circular cylinder is 4.4 m2. If the radius of the base of the cylinder is 0.7 m. Find its height. Solution: Given, radius (r) = 0.7 m and Curved Surface Area(C.S.A) = 4.4 m2 By formula, C.S.A = 2πrh where, h = height of the cylinder Putting values in the formula, 4.4 m2 = 2 * (22/7) * 0.7 * h (using π = 22
4 min read
Class 8 RD Sharma Solutions- Chapter 22 Mensuration III (Surface Area And Volume Of Right Circular Cylinder) - Exercise 22.2 | Set 1
Question 1. Find the volume of a cylinder whose (i) r = 3.5 cm, h = 40 cm (ii) r = 2.8 m, h = 15 m Solution: (i) Given that, r = 3.5 cm, h = 40 cm As we know that Volume of a cylinder = πr2h = 22/7 × 3.5 × 3.5 × 40 = 1540 cm3 (ii) Given that, r = 2.8 m, h =15 m As we know that Volume of a cylinder = πr2h = 22/7 × 2.8 × 2.8 × 15 = 369.6 m3 Question
11 min read
Class 8 RD Sharma Solutions- Chapter 22 Mensuration III (Surface Area And Volume Of Right Circular Cylinder) - Exercise 22.2 | Set 2
Chapter 22 Mensuration III (Surface Area And Volume Of Right Circular Cylinder) - Exercise 22.2 | Set 1Question 21. A well is dug 20 m deep and it has a diameter of 7 m. The earth which is so dug out is spread out on a rectangular plot 22 m long and 14 m broad. What is the height of the platform so formed? Solution: Given that, Depth of well = 20m
17 min read
Class 9 RD Sharma Solutions- Chapter 20 Surface Area And Volume of A Right Circular Cone - Exercise 20.1 | Set 1
Question 1. Find the curved surface area of a cone, if its slant height is 6 cm and the radius of its base is 21 cm.2 Solution: According to the question, Slant height of cone, l = 60 cm and radius of the base of cone, r = 21 cm Since, curved surface area of cone = πrl = 22/7 x 21 x 60 =3960 cm2 Question 2. The radius of a cone is 5 cm and vertical
4 min read
Class 9 RD Sharma Solutions- Chapter 21 Surface Area and Volume of a Sphere - Exercise 21.2 | Set 1
Question 1. Find the volume of a sphere whose radius is : (i) 2 cm (ii) 3.5 cm (iii) 10.5 cm. Solution: As we know that, Volume of a sphere = 4/3πr3 Cubic Units Where r is radius of a sphere (i) Given that, Radius = 2 cm put in formula and we get, Volume = 4/3 × 22/7 × (2)3 = 33.52 Volume = 33.52 cm3 (ii) Given that, Radius = 3.5cm putting value in
9 min read
Class 9 RD Sharma Solutions - Chapter 21 Surface Area and Volume of a Sphere - Exercise 21.2 | Set 2
Question 17. A cylindrical jar of radius 6 cm contains oil. Iron spheres each of radius 1.5 cm are immersed in the oil. How many spheres are necessary to raise the level of the oil by two centimeters? Solution: Given that, Radius of the cylinder jar = r1 = 6 cm, Level to be raised = 2 cm, Radius of each iron sphere = r2 = 1.5 cm, Number of sphere =
9 min read