Open In App

Trigonometric ratios of some Specific Angles

Improve
Improve
Like Article
Like
Save
Share
Report

Trigonometry is all about triangles or to be more precise the relationship between the angles and sides of a triangle (right-angled triangle). In this article, we will be discussing the ratio of sides of a right-angled triangle concerning its acute angle called trigonometric ratios of the angle and find the trigonometric ratios of specific angles: 0°, 30°, 45°, 60°, and 90°.
Consider the following triangle,
  

The side BA is opposite to the angle ∠BCA so we call BA the opposite side to ∠C and AC is the hypotenuse; the other side BC is the adjacent side to ∠C.

Trigonometric Ratios of angle C

Sine: Sine of ∠C is the ratio of the side opposite to C (BA) to the hypotenuse (AC).

[Tex]sin\, C = \frac{BA}{AC}    [/Tex]  

Cosine: Cosine of ∠C is the ratio of the side adjacent to C (BC) and the hypotenuse (AC).

[Tex]cos\, C = \frac{BC}{AC}    [/Tex]  

Tangent: The tangent of ∠C is the ratio between the side opposite (BA) and adjacent to C (BC). 

[Tex]tan\, C = \frac{BA}{BC}    [/Tex]  

Cosecant: Cosecant of ∠C is the reciprocal of sin C therefore it is the ratio of the hypotenuse (AC) to the side opposite to C (BA). 

[Tex]cosec\, C = \frac{AC}{BA}    [/Tex]  

Secant: Secant of ∠C is the reciprocal of cos C therefore it is the ratio of the hypotenuse (AC) to the side adjacent to C (BC). 

[Tex]sec\, C = \frac{AC}{BC}    [/Tex]  

Cotangent: Cotangent of ∠C is the reciprocal of tan C that is the ratio of the side adjacent to C (BC) to the side opposite to C (BA). 

[Tex]cot\, C = \frac{BC}{BA}[/Tex]

Finding trigonometric ratios for angles 0°, 30°, 45°, 60°, 90° 

Considering the length of the hypotenuse AC = a, BC = b and, BA = c.

A. For angles 0° and 90°

If angle A = 0°, the length of the opposite side would be zero and hypotenuse = adjacent side, and if A = 90°, the hypotenuse = opposite side. So, with the help of the above formulas for the trigonometric ratios we get – 

if A = 0°   [Tex]\\ sin A = \frac{BC}{AC} = \frac{b}{a} = 0 \\\quad\\ cos A = \frac{AB}{AC} = \frac{c}{a} =1 \\\quad\\ tan A = \frac{BC}{AB} = \frac{b}{a} = 0 \\\quad\\ cosec A = \frac{AC}{BC} = \frac{a}{b} = not\, defined \\\quad\\ sec A = \frac{AC}{AB} = \frac{a}{c}= 1 \\\quad\\ cot A = \frac{AB}{BC} = \frac{a}{b}= not\, defined \\\quad\\[/Tex]

if A = 90°   [Tex]\\ sin A = \frac{BC}{AC} = \frac{b}{a} = 1 \\\quad\\ cos A = \frac{BA}{AC} = \frac{c}{a} = 0 \\\quad\\ tan A = \frac{BC}{BA} = \frac{b}{c} = not\, defined \\\quad\\ cosec A = \frac{AC}{BC} = \frac{b}{a}= 1 \\\quad\\ sec A = \frac{AC}{BA} = \frac{a}{c}= not\, defined \\\quad\\ cot A = \frac{BA}{BC} = 0[/Tex]

Here some of the trigonometric ratios result as not defined as at the particular angle it is divided by 0 which is undefined.

B. For angles 30° and 60°

Consider an equilateral triangle ABC. Since each angle in an equilateral triangle is 60°, therefore,

∠A = ∠B = ∠C = 60°.

∆ABD is a right triangle, right-angled at D with ∠BAD = 30° and ∠ABD = 60°, 

Here ∆ADB and ∆ADC are similar as they are Corresponding parts of Congruent triangles (CPCT).

[Tex]In\, \Delta ABD\;,AB=a\,,BD=\frac{a}{2} \\and\,AB^2=BD^2+AD^2\\ \quad\\\implies AD^2=AB^2-BD^2 \\ \quad\\\implies AD^2=a^2-(\frac{a}{2})^2\\ \quad\\ \implies AD^2=a^2-\frac{a^2}{4} \\ \quad\\ \implies AD^2=\frac{3a^2}{4} \\\quad\\ \implies AD= \frac{\sqrt{3} a}{2}[/Tex]

Now we know the values of AB, BD, and AD, So the trigonometric ratios for angle 30° are,

[Tex]sin\ 30=\frac{BD}{AB}= \frac{a/2}{a}=\frac{1}{2} \\ \quad\\cos\ 30=\frac{AD}{AB}=\frac{\sqrt{3}a/2}{a} =\frac{\sqrt{3}}{2} \\ \quad\\tan\ 30=\frac{BD}{AD}=\frac{a/2}{\sqrt{3}a/2}=\frac{1}{\sqrt{3}} \\\quad\\cosec\ 30=\frac{AB}{BD}=\frac{a}{a/2}=2 \\\quad\\sec\ 30=\frac{AB}{AD}=\frac{a}{\sqrt{3}a/2} =\frac{2}{\sqrt{3}}  \\\quad\\cot\ 30=\frac{AD}{BD}=\frac{\sqrt{3}a/2}{a/2}= \sqrt{3}[/Tex]

For angle 60°

[Tex]sin\ 60=\frac{AD}{AB}= \frac{\sqrt{3}a/2}{a}=\frac{\sqrt{3}}{2} \\ \quad\\cos\ 60=\frac{BD}{AB}=\frac{a/2}{a}=\frac{1}{2} \\\quad\\tan\ 60=\frac{AD}{BD}=\frac{\sqrt{3}a/2}{a/2}=\sqrt{3} \\\quad\\cosec\ 60=\frac{AB}{AD}=\frac{a}{\sqrt{3}a/2}=\frac{2}{\sqrt{3}} \\\quad\\sec=\frac{AB}{BD}=\frac{a}{a/2}=2 \\\quad\\cot\ 60=\frac{BD}{AD}=\frac{a/2}{\sqrt{3}a/2}=\frac{1}{\sqrt{3}}[/Tex]

C. For angle 45°

In a right-angled triangle if one angle is 45° then the other angle is also 45° thus, making it an isosceles right-angle triangle.

If the length of side BC = a then length of AB = a and length of AC(hypotenuse) is a√2 using Pythagoras Theorem, then

[Tex]sin\ A = \frac{BC}{AC} = \frac{a}{a\sqrt2} = \frac{1}{\sqrt2}\\ \quad\\ cos\ A = \frac{AB}{AC} = \frac{a}{a\sqrt2} = \frac{1}{\sqrt2}\\ \quad\\ tan\ A = \frac{BC}{AB} = \frac{a}{a} = 1\\ \quad\\ cosec\ A = \frac{1}{sin\ A}= \sqrt2\\ \quad\\ sec\ A = \frac{1}{cos\ A} = \sqrt2\\ \quad\\ cot\ A = \frac{1}{tan\ A} = 1\\[/Tex]

All values

        ∠A         0°        30°        45°        60°        90°
        sin A                  0        1/2        1/√2        √3/2        1
        cos A        1        √3/2                1/√2                1/2                0
        tan A        0        1/√3        1        √3Not defined
        cosec A Not defined        2        √2        2/√3        1
        sec A        1        2/√3        √2        2Not defined
        cot ANot defined        √3        1        1/√3        0

Last Updated : 27 Mar, 2024
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads