An angle is a geometrical figure when two rays meet at a common point on a plane. These rays form the sides of the angle and the meeting point is referred as the vertex of the angle. There is something that we need to keep in mind that the plane that forms an angle doesn’t need to be a Euclidean plane. Now, in a circle, the length of an arc is a portion of the circumference. The figure explains the various parts we have discussed:

Given an angle and the diameter of a circle, we can calculate the length of the arc using the formula:
ArcLength = ( 2 * pi * radius ) * ( angle / 360 )
Where pi = 22/7,
diameter = 2 * radius,
angle is in degree.
Examples :
Input :
Diameter = 25
Angle = 45
Explanation : ((22/7) * 25) * (45/360)
Output : 9.821 (rounded)
Input :
Diameter = 80
Angle = 60
Explanation : ((22/7) * 80) * (60/360)
Output : 41.905 (rounded)
Note: If angle is greater than or equal to 360 degree, then the arc length cannot be calculated, since no angle is possible.
C++
#include <iostream>
using namespace std;
double arcLength( double diameter,
double angle)
{
double pi = 22.0 / 7.0;
double arc;
if (angle >= 360)
{
cout<< "Angle cannot" ,
" be formed" ;
return 0;
}
else
{
arc = (pi * diameter) *
(angle / 360.0);
return arc;
}
}
int main()
{
double diameter = 25.0;
double angle = 45.0;
double arc_len = arcLength(diameter,
angle);
cout << (arc_len);
return 0;
}
|
Java
public class Arc {
static double arcLength( double diameter,
double angle)
{
double pi = 22.0 / 7.0 ;
double arc;
if (angle >= 360 ) {
System.out.println( "Angle cannot"
+ " be formed" );
return 0 ;
}
else {
arc = (pi * diameter) * (angle / 360.0 );
return arc;
}
}
public static void main(String args[])
{
double diameter = 25.0 ;
double angle = 45.0 ;
double arc_len = arcLength(diameter, angle);
System.out.println(arc_len);
}
}
|
Python3
import math
def arcLength(diameter, angle ):
if angle > = 360 :
print ( "Angle cannot be formed" )
return 0
else :
arc = ( 3.142857142857143 * diameter) * (angle / 360.0 )
return arc
diameter = 25.0
angle = 45.0
arc_len = arcLength(diameter, angle)
print (arc_len)
|
C#
using System;
public class GFG {
static double arcLength( double diameter,
double angle)
{
double pi = 22.0 / 7.0;
double arc;
if (angle >= 360) {
Console.WriteLine( "Angle cannot"
+ " be formed" );
return 0;
}
else {
arc = (pi * diameter) * (angle / 360.0);
return arc;
}
}
public static void Main()
{
double diameter = 25.0;
double angle = 45.0;
double arc_len = arcLength(diameter, angle);
Console.WriteLine(arc_len);
}
}
|
PHP
<?php
function arcLength( $diameter ,
$angle )
{
$pi = 22.0 / 7.0;
$arc ;
if ( $angle >= 360)
{
echo "Angle cannot" ,
" be formed" ;
return 0;
}
else
{
$arc = ( $pi * $diameter ) *
( $angle / 360.0);
return $arc ;
}
}
$diameter = 25.0;
$angle = 45.0;
$arc_len = arcLength( $diameter , $angle );
echo ( $arc_len );
?>
|
Javascript
<script>
function arcLength(diameter, angle)
{
let pi = 22.0 / 7.0;
let arc;
if (angle >= 360)
{
document.write( "Angle cannot" +
" be formed" );
return 0;
}
else
{
arc = (pi * diameter) *
(angle / 360.0);
return arc;
}
}
let diameter = 25.0;
let angle = 45.0;
let arc_len = arcLength(diameter,
angle);
document.write(arc_len);
</script>
|
Output:
9.821428571428571
Time Complexity: O(1)
Auxiliary Space: O(1)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
17 Feb, 2023
Like Article
Save Article