Open In App
Related Articles

Represent a given set of points by the best possible straight line

Improve Article
Improve
Save Article
Save
Like Article
Like

Find the value of m and c such that a straight line y = mx + c, best represents the equation of a given set of points (x_1    , y_1    ), (x_2    , y_2    ), (x_3    , y_3    ), ……., (x_n    , y_n    ), given n >=2.

Examples:  

Input : n = 5
        x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4, x_5 = 5y_1 = 14, y_2 = 27, y_3 = 40, y_4 = 55, y_5 = 68   Output : m = 13.6c = 0 If we take any pair of number ( x_i, y_i ) from the given data, these value of m and cshould make it best fit into the equation for a straight line, y = mx + c. Take x_1 = 1 and y_1 = 14, then using valuesof m and c from the output, and putting it in the following equation,y = mx + c,L.H.S.: y = 14, R.H.S: mx + c = 13.6 x 1 + 0 = 13.6So, they are approximately equal.Now, take x_3 = 3 and y_3 = 40,L.H.S.: y = 40, R.H.S: mx + c = 13.6 x 3 + 0 = 40.8So, they are also approximately equal, and so onfor all other values.Input : n = 6x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4, x_5 = 5, x_6 = 6y_1 = 1200, y_2 = 900, y_3 = 600, y_4 = 200, y_5 = 110, y_6 = 50Output : m = -243.42c = 1361.97

Approach

To best fit a set of points in an equation for a straight line, we need to find the value of two variables, m and c. Now, since there are 2 unknown variables and depending upon the value of n, two cases are possible – 

Case 1 – When n = 2 : There will be two equations and two unknown variables to find, so, there will be a unique solution . 
Case 2 – When n > 2 : In this case, there may or may not exist values of m and c, which satisfy all the n equations, but we can find the best possible values of m and c which can fit a straight line in the given points .

So, if we have n different pairs of x and y, then, we can form n no. of equations from them for a straight line, as follows 

f_1 = mx_1 + c,f_2 = mx_2 + c,f_3 = mx_3 + c,......................................,......................................,f_n = mx_n + c,where, f_i, is the value obtained by putting x_i in equation mx + c. 

Then, since ideally f_i    should be same as y_i    , but still we can find the f_i    closest to y_i    in all the cases, if we take a new quantity, U = ?(y_i    – f_i    )^2    , and make this quantity minimum for all value of i from 1 to n. 

Note:(y_i    – f_i    )^2    is used in place of (y_i    – f_i    ), as we want to consider both the cases when f_i    or when y_i    is greater, and we want their difference to be minimum, so if we would not square the term, then situations in which f_i
is greater and situation in which y_i    is greater will cancel each other to an extent, and this is not what we want. So, we need to square the term.

Now, for U to be minimum, it must satisfy the following two equations –

\frac{\partial U}{\partial m} = 0 and  \frac{\partial U}{\partial c} = 0. 

On solving the above two equations, we get two equations, as follows : 

?y = nc + m?x, and
?xy = c?x + m?x^2, which can be rearranged as - m = (n * ?xy - ?x?y) / (n * ?x^2 - (?x)^2), andc = (?y - m?x) / n, 

So, this is how values of m and c for both the cases are obtained, and we can represent a given set of points, by the best possible straight line. 

The following code implements the above given algorithm – 

C++




// C++ Program to find m and c for a straight line given,
// x and y
#include <cmath>
#include <iostream>
using namespace std;
 
// function to calculate m and c that best fit points
// represented by x[] and y[]
void bestApproximate(int x[], int y[], int n)
{
    float m, c, sum_x = 0, sum_y = 0, sum_xy = 0, sum_x2 = 0;
    for (int i = 0; i < n; i++) {
        sum_x += x[i];
        sum_y += y[i];
        sum_xy += x[i] * y[i];
        sum_x2 += pow(x[i], 2);
    }
 
    m = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - pow(sum_x, 2));
    c = (sum_y - m * sum_x) / n;
 
    cout << "m =" << m;
    cout << "\nc =" << c;
}
 
// Driver main function
int main()
{
    int x[] = { 1, 2, 3, 4, 5 };
    int y[] = { 14, 27, 40, 55, 68 };
    int n = sizeof(x) / sizeof(x[0]);
    bestApproximate(x, y, n);
    return 0;
}

C




// C Program to find m and c for a straight line given,
// x and y
#include <stdio.h>
 
// function to calculate m and c that best fit points
// represented by x[] and y[]
void bestApproximate(int x[], int y[], int n)
{
    int i, j;
    float m, c, sum_x = 0, sum_y = 0, sum_xy = 0, sum_x2 = 0;
    for (i = 0; i < n; i++) {
        sum_x += x[i];
        sum_y += y[i];
        sum_xy += x[i] * y[i];
        sum_x2 += (x[i] * x[i]);
    }
 
    m = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - (sum_x * sum_x));
    c = (sum_y - m * sum_x) / n;
 
    printf("m =% f", m);
    printf("\nc =% f", c);
}
 
// Driver main function
int main()
{
    int x[] = { 1, 2, 3, 4, 5 };
    int y[] = { 14, 27, 40, 55, 68 };
    int n = sizeof(x) / sizeof(x[0]);
    bestApproximate(x, y, n);
    return 0;
}

Java




// Java Program to find m and c for a straight line given,
// x and y
import java.io.*;
import static java.lang.Math.pow;
 
public class A {
    // function to calculate m and c that best fit points
    // represented by x[] and y[]
    static void bestApproximate(int x[], int y[])
    {
        int n = x.length;
        double m, c, sum_x = 0, sum_y = 0,
                     sum_xy = 0, sum_x2 = 0;
        for (int i = 0; i < n; i++) {
            sum_x += x[i];
            sum_y += y[i];
            sum_xy += x[i] * y[i];
            sum_x2 += pow(x[i], 2);
        }
 
        m = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - pow(sum_x, 2));
        c = (sum_y - m * sum_x) / n;
 
        System.out.println("m = " + m);
        System.out.println("c = " + c);
    }
 
    // Driver main function
    public static void main(String args[])
    {
        int x[] = { 1, 2, 3, 4, 5 };
        int y[] = { 14, 27, 40, 55, 68 };
        bestApproximate(x, y);
    }
}

Python3




# python Program to find m and c for
# a straight line given, x and y
 
# function to calculate m and c that
# best fit points represented by x[]
# and y[]
def bestApproximate(x, y, n):
     
    sum_x = 0
    sum_y = 0
    sum_xy = 0
    sum_x2 = 0
     
    for i in range (0, n):
        sum_x += x[i]
        sum_y += y[i]
        sum_xy += x[i] * y[i]
        sum_x2 += pow(x[i], 2)
 
    m = (float)((n * sum_xy - sum_x * sum_y)
            / (n * sum_x2 - pow(sum_x, 2)));
             
    c = (float)(sum_y - m * sum_x) / n;
     
    print("m = ", m);
    print("c = ", c);
     
     
# Driver main function
x = [1, 2, 3, 4, 5 ]
y = [ 14, 27, 40, 55, 68]
n = len(x)
 
bestApproximate(x, y, n)
     
# This code is contributed by Sam007.

C#




// C# Program to find m and c for a
// straight line given, x and y
using System;
 
class GFG {
 
    // function to calculate m and c that
    // best fit points represented by x[] and y[]
    static void bestApproximate(int[] x, int[] y)
    {
        int n = x.Length;
        double m, c, sum_x = 0, sum_y = 0,
                     sum_xy = 0, sum_x2 = 0;
 
        for (int i = 0; i < n; i++) {
            sum_x += x[i];
            sum_y += y[i];
            sum_xy += x[i] * y[i];
            sum_x2 += Math.Pow(x[i], 2);
        }
 
        m = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - Math.Pow(sum_x, 2));
 
        c = (sum_y - m * sum_x) / n;
 
        Console.WriteLine("m = " + m);
        Console.WriteLine("c = " + c);
    }
 
    // Driver main function
    public static void Main()
    {
        int[] x = { 1, 2, 3, 4, 5 };
        int[] y = { 14, 27, 40, 55, 68 };
 
        // Function calling
        bestApproximate(x, y);
    }
}
 
// This code is contributed by Sam007

PHP




<?php
// PHP Program to find m and c
// for a straight line given,
// x and y
 
// function to calculate m and
// c that best fit points
// represented by x[] and y[]
function bestApproximate($x, $y, $n)
{
    $i; $j;
    $m; $c;
    $sum_x = 0;
    $sum_y = 0;
    $sum_xy = 0;
    $sum_x2 = 0;
    for ($i = 0; $i < $n; $i++)
    {
        $sum_x += $x[$i];
        $sum_y += $y[$i];
        $sum_xy += $x[$i] * $y[$i];
        $sum_x2 += ($x[$i] * $x[$i]);
    }
 
    $m = ($n * $sum_xy - $sum_x * $sum_y) /
         ($n * $sum_x2 - ($sum_x * $sum_x));
    $c = ($sum_y - $m * $sum_x) / $n;
 
    echo "m =", $m;
    echo "\nc =", $c;
}
 
    // Driver Code
    $x =array(1, 2, 3, 4, 5);
    $y =array (14, 27, 40, 55, 68);
    $n = sizeof($x);
    bestApproximate($x, $y, $n);
 
// This code is contributed by ajit
?>

Javascript




<script>
 
// Javascript Program to find m and c
// for a straight line given, x and y
 
// function to calculate m and c that
// best fit points represented by x[] and y[]
function bestApproximate(x, y, n)
{
    let m, c, sum_x = 0, sum_y = 0,
             sum_xy = 0, sum_x2 = 0;
    for(let i = 0; i < n; i++)
    {
        sum_x += x[i];
        sum_y += y[i];
        sum_xy += x[i] * y[i];
        sum_x2 += Math.pow(x[i], 2);
    }
 
    m = (n * sum_xy - sum_x * sum_y) /
        (n * sum_x2 - Math.pow(sum_x, 2));
    c = (sum_y - m * sum_x) / n;
 
    document.write("m =" + m);
    document.write("<br>c =" + c);
}
 
// Driver code
let x = [ 1, 2, 3, 4, 5 ];
let y = [ 14, 27, 40, 55, 68 ];
let n = x.length;
 
bestApproximate(x, y, n);
 
// This code is contributed by subham348
 
</script>

Output: 

m=13.6
c=0.0

Analysis of above code- 
Auxiliary Space : O(1) 
Time Complexity : O(n). We have one loop which iterates n times, and each time it performs constant no. of computations.

Reference- 
1-Higher Engineering Mathematics by B.S. Grewal.

This article is contributed by Mrigendra Singh. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


Last Updated : 22 Nov, 2022
Like Article
Save Article
Similar Reads
Related Tutorials