Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Number of rectangles in N*M grid

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

We are given a N*M grid, print the number of rectangles in it.
Examples: 

Input  : N = 2, M = 2
Output : 9
There are 4 rectangles of size 1 x 1.
There are 2 rectangles of size 1 x 2
There are 2 rectangles of size 2 x 1
There is one rectangle of size 2 x 2.

Input  : N = 5, M = 4
Output : 150

Input :  N = 4, M = 3
Output: 60
Recommended Practice

Brute Force Approach :

  • Iterate over all possible pairs of horizontal lines.
  • Iterate over all possible pairs of vertical lines.
  • count the number of rectangles that can be formed using these lines. 

Below is the code for the above approach :

C++




#include <bits/stdc++.h>
using namespace std;
 
int rectCount(int n, int m)
{
    int count = 0;
    for(int i=1; i<=n; i++) // iterating over all possible pairs of horizontal lines
    {
        for(int j=1; j<=m; j++) // iterating over all possible pairs of vertical lines
        {
            count += (n-i+1)*(m-j+1); // counting the number of rectangles that can be formed using these lines
        }
    }
    return count;
}
 
/* driver code */
int main()
{
    int n = 5, m = 4;
    cout << rectCount(n, m);
    return 0;
}

Output

150

Time Complexity : O(N^2)
Space Complexity : O(1)

We have discussed counting number of squares in a n x m grid,
Let us derive a formula for number of rectangles.
If the grid is 1×1, there is 1 rectangle. 
If the grid is 2×1, there will be 2 + 1 = 3 rectangles 
If it grid is 3×1, there will be 3 + 2 + 1 = 6 rectangles. 
we can say that for N*1 there will be N + (N-1) + (n-2) … + 1 = (N)(N+1)/2 rectangles
If we add one more column to N×1, firstly we will have as many rectangles in the 2nd column as the first, 
and then we have that same number of 2×M rectangles. 
So N×2 = 3 (N)(N+1)/2
After deducing this we can say 
For N*M we’ll have (M)(M+1)/2 (N)(N+1)/2 = M(M+1)(N)(N+1)/4
So the formula for total rectangles will be M(M+1)(N)(N+1)/4 

.

Combinatorial Logic:

N*M grid can be represented as (N+1) vertical lines and (M+1) horizontal lines.
In a rectangle, we need two distinct horizontal and two distinct verticals.
So going by the logic of Combinatorial Mathematics we can choose 2 vertical lines and 2 horizontal lines to form a rectangle. And total number of these combinations is the number of rectangles possible in the grid.

Total Number of Rectangles in N*M grid: N+1C2 * M+1C2 = (N*(N+1)/2!)*(M*(M+1)/2!) = N*(N+1)*M*(M+1)/4
 

C++




// C++ program to count number of rectangles
// in a n x m grid
#include <bits/stdc++.h>
using namespace std;
 
int rectCount(int n, int m)
{
    return (m * n * (n + 1) * (m + 1)) / 4;
}
 
/* driver code */
int main()
{
    int n = 5, m = 4;
    cout << rectCount(n, m);
    return 0;
}

Java




// JAVA Code to count number of
// rectangles in N*M grid
import java.util.*;
 
class GFG {
     
    public static long  rectCount(int n, int m)
    {
        return (m * n * (n + 1) * (m + 1)) / 4;
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        int n = 5, m = 4;
       System.out.println(rectCount(n, m));
    }
}
 
// This code is contributed by Arnav Kr. Mandal.

Python3




# Python3 program to count number
# of rectangles in a n x m grid
 
def rectCount(n, m):
 
    return (m * n * (n + 1) * (m + 1)) // 4
 
# Driver code
n, m = 5, 4
print(rectCount(n, m))
 
# This code is contributed by Anant Agarwal.

C#




// C# Code to count number of
// rectangles in N*M grid
using System;
 
class GFG {
      
    public static long  rectCount(int n, int m)
    {
        return (m * n * (n + 1) * (m + 1)) / 4;
    }
      
    // Driver program
    public static void Main()
    {
        int n = 5, m = 4;
       Console.WriteLine(rectCount(n, m));
    }
}
  
// This code is contributed by Anant Agarwal.

PHP




<?php
// PHP program to count
// number of rectangles
// in a n x m grid
 
function rectCount($n, $m)
{
    return ($m * $n *
           ($n + 1) *
           ($m + 1)) / 4;
}
 
// Driver Code
$n = 5;
$m = 4;
echo rectCount($n, $m);
 
// This code is contributed
// by ajit
?>

Javascript




<script>
 
    // Javascript Code to count number
    // of rectangles in N*M grid
     
    function rectCount(n, m)
    {
        return parseInt((m * n * (n + 1) *
                        (m + 1)) / 4, 10);
    }
     
      let n = 5, m = 4;
      document.write(rectCount(n, m));
     
</script>

Output

150

Time complexity: O(1)
Auxiliary Space: O(1), since no extra space has been taken.

This article is contributed by Pranav. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Last Updated : 01 May, 2023
Like Article
Save Article
Similar Reads
Related Tutorials