**Ellipsoid**, closed surface of which all plane cross sections are either ellipses or circles. An ellipsoid is symmetrical about three mutually perpendicular axes that intersect at the center. It is a three-dimensional, closed geometric shape, all planar sections of which are ellipses or circles.

An ellipsoid has three independent axes, and is usually specified by the lengths a, b, c of the three semi-axes. If an ellipsoid is made by rotating an ellipse about one of its axes, then two axes of the ellipsoid are the same, and it is called an ellipsoid of revolution, or spheroid. If the lengths of all three of its axes are the same, it is a sphere.

**Standard equation of Ellipsoid :**x

^{2}/ a

^{2}+ y

^{2}/ b

^{2}+ z

^{2}/ c

^{2}= 1 where a, b, c are positive real numbers.

**Volume of Ellipsoid :**(4/3) * pi * r1 * r2 * r3

Below is code for calculating volume of ellipsoid :

## C++

`// CPP program to find the ` `// volume of Ellipsoid. ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to find the volume ` `float` `volumeOfEllipsoid(` `float` `r1, ` ` ` `float` `r2, ` ` ` `float` `r3) ` `{ ` ` ` `float` `pi = 3.14; ` ` ` `return` `1.33 * pi * r1 * ` ` ` `r2 * r3; ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` ` ` `float` `r1 = 2.3, r2 = 3.4, r3 = 5.7; ` ` ` `cout << ` `"volume of ellipsoid is : "` ` ` `<< volumeOfEllipsoid(r1, r2, r3); ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java program to find the ` `// volume of Ellipsoid. ` `import` `java.util.*; ` `import` `java.lang.*; ` ` ` `class` `GfG ` `{ ` ` ` ` ` `// Function to find the volume ` ` ` `public` `static` `float` `volumeOfEllipsoid(` `float` `r1, ` ` ` `float` `r2, ` ` ` `float` `r3) ` ` ` `{ ` ` ` `float` `pi = (` `float` `)` `3.14` `; ` ` ` `return` `(` `float` `) ` `1.33` `* pi * r1 * r2 * r3; ` ` ` `} ` ` ` ` ` `// Driver Code ` ` ` `public` `static` `void` `main(String args[]) ` ` ` `{ ` ` ` `float` `r1 = (` `float` `) ` `2.3` `, ` ` ` `r2 = (` `float` `) ` `3.4` `, ` ` ` `r3 = (` `float` `) ` `5.7` `; ` ` ` `System.out.println(` `"volume of ellipsoid is : "` ` ` `+ volumeOfEllipsoid(r1, r2, r3)); ` ` ` `} ` `} ` ` ` `// This code is contributed by Sagar Shukla ` |

*chevron_right*

*filter_none*

## Python

` ` `''' Python3 program to Volume of ellipsoid'''` `import` `math ` ` ` `# Function To calculate Volume ` `def` `volumeOfEllipsoid(r1, r2, r3): ` ` ` `return` `1.33` `*` `math.pi ` `*` `r1 ` `*` `r2 ` `*` `r3 ` ` ` ` ` `# Driver Code ` `r1 ` `=` `float` `(` `2.3` `) ` `r2 ` `=` `float` `(` `3.4` `) ` `r3 ` `=` `float` `(` `5.7` `) ` `print` `( ` `"Volume of ellipsoid is : "` `, ` ` ` `volumeOfEllipsoid(r1, r2, r3) ) ` |

*chevron_right*

*filter_none*

## C#

`// C# program to find the ` `// volume of Ellipsoid. ` `using` `System; ` ` ` `class` `GfG ` `{ ` ` ` ` ` `// Function to find the volume ` ` ` `public` `static` `float` `volumeOfEllipsoid(` `float` `r1, ` ` ` `float` `r2, ` ` ` `float` `r3) ` ` ` `{ ` ` ` `float` `pi = (` `float` `)3.14; ` ` ` `return` `(` `float` `) 1.33 * pi * r1 * r2 * r3; ` ` ` `} ` ` ` ` ` `// Driver Code ` ` ` `public` `static` `void` `Main() ` ` ` `{ ` ` ` `float` `r1 = (` `float` `)2.3, ` ` ` `r2 =(` `float` `) 3.4, ` ` ` `r3 = (` `float` `)5.7; ` ` ` `Console.WriteLine(` `"volume of ellipsoid is : "` `+ ` ` ` `volumeOfEllipsoid(r1, r2, r3)); ` ` ` `} ` `} ` ` ` `// This code is contributed by vt_m ` |

*chevron_right*

*filter_none*

## PHP

`<?php ` `// PHP program to find the ` `// volume of Ellipsoid. ` ` ` ` ` `// Function to find the volume ` `function` `volumeOfEllipsoid( ` `$r1` `, ` ` ` `$r2` `, ` ` ` `$r3` `) ` `{ ` ` ` `$pi` `= 3.14; ` ` ` `return` `1.33 * ` `$pi` `* ` `$r1` `* ` ` ` `$r2` `* ` `$r3` `; ` `} ` ` ` `// Driver Code ` ` ` ` ` `$r1` `= 2.3; ` `$r2` `= 3.4; ` ` ` `$r3` `= 5.7; ` ` ` `echo` `( ` `"volume of ellipsoid is : "` `); ` ` ` `echo` `( volumeOfEllipsoid(` `$r1` `, ` `$r2` `, ` `$r3` `)); ` ` ` ` ` `// This code is contributed by vt_m . ` `?> ` |

*chevron_right*

*filter_none*

**Output :**

Volume of ellipsoid is : 186.15

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.