Open In App
Related Articles

Minimum lines to cover all points

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given N points in 2-dimensional space, we need to print the count of the minimum number of lines which traverse through all these N points and which go through a specific (xO, yO) point also.
Examples: 
 

If given points are (-1, 3), (4, 3), (2, 1), (-1, -2), 
(3, -3) and (xO, yO) point is (1, 0) i.e. every line
must go through this point. 
Then we have to draw at least two lines to cover all
these points going through (xO, yO) as shown in below
diagram.


 


We can solve this problem by considering the slope of all points with (xO, yO). If two distinct points have the same slope with (xO, yO) then they can be covered with same line only so we can track slope of each point and whenever we get a new slope we will increase our line count by one. 
In below code slope is stored as a pair of integer to get rid of the precision problem and a set is used to keep track of occurred slopes. 
Please see below code for better understanding. 
 

CPP

// C++ program to get minimum lines to cover
// all the points
#include <bits/stdc++.h>
using namespace std;
  
//    Utility method to get gcd of a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
  
//    method returns reduced form of dy/dx as a pair
pair<int, int> getReducedForm(int dy, int dx)
{
    int g = gcd(abs(dy), abs(dx));
  
    //    get sign of result
    bool sign = (dy < 0) ^ (dx < 0);
  
    if (sign)
        return make_pair(-abs(dy) / g, abs(dx) / g);
    else
        return make_pair(abs(dy) / g, abs(dx) / g);
}
  
/*    method returns minimum number of lines to
    cover all points where all lines goes
    through (xO, yO) */
int minLinesToCoverPoints(int points[][2], int N,
                                   int xO, int yO)
{
    //    set to store slope as a pair
    set< pair<int, int> > st;
    pair<int, int> temp;
    int minLines = 0;
  
    //    loop over all points once
    for (int i = 0; i < N; i++)
    {
        //    get x and y co-ordinate of current point
        int curX = points[i][0];
        int curY = points[i][1];
  
        temp = getReducedForm(curY - yO, curX - xO);
  
        // if this slope is not there in set,
        // increase ans by 1 and insert in set
        if (st.find(temp) == st.end())
        {
            st.insert(temp);
            minLines++;
        }
    }
  
    return minLines;
}
  
// Driver code to test above methods
int main()
{
    int xO, yO;
    xO = 1;
    yO = 0;
  
    int points[][2] =
    {
        {-1, 3},
        {4, 3},
        {2, 1},
        {-1, -2},
        {3, -3}
    };
  
    int N = sizeof(points) / sizeof(points[0]);
    cout << minLinesToCoverPoints(points, N, xO, yO);
    return 0;
}

                    

Java

// Java Program for above approach
import java.io.*;
import java.util.*;
import java.util.Set;
  
// User defined Pair class
class Pair {
    int x;
    int y;
  
    // Constructor
    public Pair(int x, int y)
    {
        this.x = x;
        this.y = y;
    }
}
  
class GFG {
    //  Utility method to get gcd of a and b
    public static int gcd(int a, int b)
    {
        if (b == 0)
            return a;
        return gcd(b, a % b);
    }
    // method returns reduced form of dy/dx as a pair
    public static Pair getReducedForm(int dy, int dx)
    {
        int g = gcd(Math.abs(dy), Math.abs(dx));
  
        //    get sign of result
        boolean sign = (dy < 0) ^ (dx < 0);
        Pair res = new Pair(0, 0);
  
        if (sign) {
            res.x = -Math.abs(dy) / g;
            res.y = Math.abs(dx) / g;
        }
        else {
            res.x = Math.abs(dy) / g;
            res.y = Math.abs(dx) / g;
        }
        return res;
    }
  
    /*  method returns minimum number of lines to
    cover all points where all lines goes
    through (xO, yO) */
  
    public static int minLinesToCoverPoints(int points[][],
                                            int N, int xO,
                                            int yO)
    {
        // set to store slope as a string
        Set<String> st = new HashSet<String>();
  
        Pair temp;
        int minLines = 0;
  
        //    loop over all points once
        for (int i = 0; i < N; i++) {
            //    get x and y co-ordinate of current point
            int curX = points[i][0];
            int curY = points[i][1];
  
            temp = getReducedForm(curY - yO, curX - xO);
  
            // convert pair into string to store in set
            String tempString = temp.x + "," + temp.y;
  
            // if this slope is not there in set,
            // increase ans by 1 and insert in set
  
            if (st.contains(tempString) == false) {
                st.add(tempString);
                minLines += 1;
            }
        }
  
        return minLines;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int xO, yO;
        xO = 1;
        yO = 0;
  
        int points[][] = { { -1, 3 },
                           { 4, 3 },
                           { 2, 1 },
                           { -1, -2 },
                           { 3, -3 } };
  
        int N = points.length;
        System.out.println(
            minLinesToCoverPoints(points, N, xO, yO));
    }
}
  
// This code is contributed by rj13to.

                    

Python3

# Python3 program to get minimum lines to cover
# all the points
  
# Utility method to get gcd of a and b
def gcd(a, b):
    if (b == 0):
        return a
    return gcd(b, a % b)
  
# method returns reduced form of dy/dx as a pair
def getReducedForm(dy, dx):
    g = gcd(abs(dy), abs(dx))
  
    # get sign of result
    sign = (dy < 0) ^ (dx < 0)
  
    if (sign):
        return (-abs(dy) // g, abs(dx) // g)
    else:
        return (abs(dy) // g, abs(dx) // g)
  
# /* method returns minimum number of lines to
#     cover all points where all lines goes
#     through (xO, yO) */
def minLinesToCoverPoints(points, N, xO, yO):
      
    # set to store slope as a pair
    st = dict()
    minLines = 0
  
    # loop over all points once
    for i in range(N):
          
        # get x and y co-ordinate of current point
        curX = points[i][0]
        curY = points[i][1]
  
        temp = getReducedForm(curY - yO, curX - xO)
  
        # if this slope is not there in set,
        # increase ans by 1 and insert in set
        if (temp not in st):
            st[temp] = 1
            minLines += 1
  
    return minLines
  
# Driver code 
xO = 1
yO = 0
  
points =[[-1, 3],
         [4, 3],
         [2, 1],
         [-1, -2],
         [3, -3]]
  
N = len(points)
print(minLinesToCoverPoints(points, N, xO, yO))
  
# This code is contributed by mohit kumar 29

                    

C#

// C# program to print the count of the minimum number 
// of lines which traverse through all these N points 
// and which go through a specific (xO, yO) point also
using System;
using System.Collections.Generic;
using System.Linq;
  
// User defined Pair class
public class Pair {
  public int x;
  public int y;
  
  // Constructor
  public Pair(int x, int y)
  {
    this.x = x;
    this.y = y;
  }
}
  
public class GFG{
  
  //  Utility method to get gcd of a and b
  public static int gcd(int a, int b)
  {
    if (b == 0)
      return a;
    return gcd(b, a % b);
  }
    
  // method returns reduced form of dy/dx as a pair
  public static Pair getReducedForm(int dy, int dx)
  {
    int g = gcd(Math.Abs(dy), Math.Abs(dx));
  
    //    get sign of result
    bool sign = (dy < 0) ^ (dx < 0);
    Pair res = new Pair(0, 0);
  
    if (sign) {
      res.x = -Math.Abs(dy) / g;
      res.y = Math.Abs(dx) / g;
    }
    else {
      res.x = Math.Abs(dy) / g;
      res.y = Math.Abs(dx) / g;
    }
    return res;
  }
  
  /*  method returns minimum number of lines to
    cover all points where all lines goes
    through (xO, yO) */
  static public int minLinesToCoverPoints(int[,] points, int N, int xO, int yO){
    // set to store slope as a string
    HashSet<string> st = new HashSet<string>();
  
    Pair temp;
    int minLines = 0;
  
    //    loop over all points once
    for (int i = 0; i < N; i++) {
      //    get x and y co-ordinate of current point
      int curX = points[i,0];
      int curY = points[i,1];
  
      temp = getReducedForm(curY - yO, curX - xO);
  
      // convert pair into string to store in set
      String tempString = temp.x + "," + temp.y;
  
      // if this slope is not there in set,
      // increase ans by 1 and insert in set
  
      if (st.Contains(tempString) == false) {
        st.Add(tempString);
        minLines += 1;
      }
    }
  
    return minLines;
  
  }
  
  //Driver Code
  static public void Main (){
    int xO, yO;
    xO = 1;
    yO = 0;
  
    int[,] points = new int[,] { { -1, 3 },
                                { 4, 3 },
                                { 2, 1 },
                                { -1, -2 },
                                { 3, -3 } };
  
    int N = points.GetLength(0);
    Console.Write(minLinesToCoverPoints(points, N, xO, yO));
  }
}
  
// This code is contributed by shruti456rawal

                    

Javascript

<script>
// Javascript program to get minimum lines to cover
// all the points
  
    //    Utility method to get gcd of a and b
    function gcd(a,b)
    {
        if (b == 0)
            return a;
        return gcd(b, a % b);
    }
      
    // method returns reduced form of dy/dx as a pair
    function getReducedForm(dy,dx)
    {
        let g = gcd(Math.abs(dy), Math.abs(dx));
    
    // get sign of result
    let sign = (dy < 0) ^ (dx < 0);
        
    if (sign)
    {   
        return [(Math.floor(-Math.abs(dy) / g), Math.floor(Math.abs(dx) / g))];
              
    }
    else
        return [(Math.floor(Math.abs(dy) / g), Math.floor(Math.abs(dx) / g))];
    }
      
    /*    method returns minimum number of lines to
    cover all points where all lines goes
    through (xO, yO) */
    function minLinesToCoverPoints(points,N,x0,y0)
    {
        let st=new Set();
        let temp;
        let minLines = 0;
          
        // loop over all points once
    for (let i = 0; i < N; i++)
    {
        // get x and y co-ordinate of current point
        let curX = points[i][0];
        let curY = points[i][1];
    
        temp = getReducedForm(curY - yO, curX - xO);
            
        // if this slope is not there in set,
        // increase ans by 1 and insert in set
        if (!st.has(temp.join("")))
        {
              
            st.add(temp.join(""));
            minLines++;
        }
    }
    
    return minLines;
    }
      
    // Driver code to test above methods
    let xO, yO;
    xO = 1;
    yO = 0;
      
    let points =[[-1, 3],
         [4, 3],
         [2, 1],
         [-1, -2],
         [3, -3]];
    let N = points.length;
    document.write(minLinesToCoverPoints(points, N, xO, yO))
     
// This code is contributed by unknown2108
</script>

                    

Output: 
 

2

Time Complexity: O(N) 
Auxiliary Space: O(N)




 



Last Updated : 24 Mar, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads