Given four sides of quadrilateral a, b, c, d, find the maximum area of the quadrilateral possible from the given sides .
Examples:
Input : 1 2 1 2
Output : 2.00
It is optimal to construct a rectangle for maximum area .

According to Bretschneider’s formula, the area of a general quadrilateral is given by 
Here a, b, c, d are the sides of a quadrilateral, s is the semiperimeter of a quadrilateral and angles are two opposite angles.
So, this formula is maximized only when opposite angles sum to pi(180) then we can use a simplified form of Bretschneider’s formula to get the (maximum) area K.

This formula is called as Brahmagupta’s formula .
Below is the implementation of given approach
C++
#include <iostream>
#include <math.h>
using namespace std;
double maxArea( double a, double b,
double c, double d)
{
double semiperimeter = (a + b + c + d) / 2;
return sqrt ((semiperimeter - a) *
(semiperimeter - b) *
(semiperimeter - c) *
(semiperimeter - d));
}
int main()
{
double a = 1, b = 2, c= 1, d = 2;
cout <<maxArea(a, b, c, d);
return 0;
}
|
C
#include <stdio.h>
#include <math.h>
double maxArea( double a, double b,
double c, double d)
{
double semiperimeter = (a + b + c + d) / 2;
return sqrt ((semiperimeter - a) *
(semiperimeter - b) *
(semiperimeter - c) *
(semiperimeter - d));
}
int main()
{
double a = 1, b = 2, c= 1, d = 2;
printf ( "%.2f\n" ,maxArea(a, b, c, d));
return 0;
}
|
Java
import java.io.*;
class GFG
{
static double maxArea( double a, double b,
double c, double d)
{
double semiperimeter = (a + b + c + d) / 2 ;
return Math.sqrt((semiperimeter - a) *
(semiperimeter - b) *
(semiperimeter - c) *
(semiperimeter - d));
}
public static void main (String[] args)
{
double a = 1 , b = 2 , c= 1 , d = 2 ;
System.out.println(maxArea(a, b, c, d));
}
}
|
Python3
import math
def maxArea (a , b , c , d ):
semiperimeter = (a + b + c + d) / 2
return math.sqrt((semiperimeter - a) *
(semiperimeter - b) *
(semiperimeter - c) *
(semiperimeter - d))
a = 1
b = 2
c = 1
d = 2
print ( "%.2f" % maxArea(a, b, c, d))
|
C#
using System;
class GFG {
static double maxArea( double a, double b,
double c, double d)
{
double semiperimeter = (a + b + c + d) / 2;
return Math.Sqrt((semiperimeter - a) *
(semiperimeter - b) *
(semiperimeter - c) *
(semiperimeter - d));
}
public static void Main ()
{
double a = 1, b = 2, c= 1, d = 2;
Console.WriteLine(maxArea(a, b, c, d));
}
}
|
PHP
<?php
function maxArea( $a , $b , $c , $d )
{
$semiperimeter = ( $a + $b + $c + $d ) / 2;
return sqrt(( $semiperimeter - $a ) *
( $semiperimeter - $b ) *
( $semiperimeter - $c ) *
( $semiperimeter - $d ));
}
$a = 1; $b = 2; $c = 1; $d = 2;
echo (maxArea( $a , $b , $c , $d ));
?>
|
Javascript
<script>
function maxArea(a, b, c, d)
{
let semiperimeter = (a + b + c + d) / 2;
return Math.sqrt((semiperimeter - a) *
(semiperimeter - b) *
(semiperimeter - c) *
(semiperimeter - d));
}
let a = 1, b = 2, c= 1, d = 2;
document.write(maxArea(a, b, c, d));
</script>
|
Output:
2.00
Time Complexity: O(logn)
Auxiliary Space: O(1)
Please suggest if someone has a better solution which is more efficient in terms of space and time.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
22 Jun, 2022
Like Article
Save Article