Check whether a given point lies inside a triangle or not
Given three corner points of a triangle, and one more point P. Write a function to check whether P lies within the triangle or not.
Example:
Input: A = (0, 0), B = (10, 30), C = (20, 0), P(10, 15) Output: Inside Explanation: B(10,30) / \ / \ / \ / P \ P' / \ A(0,0) ----------- C(20,0) Input: A = (0, 0), B = (10, 30), C = (20, 0), P(30, 15) Output: Outside Explanation: B(10,30) / \ / \ / \ / \ P / \ A(0,0) ----------- C(20,0)
Solution:
Let the coordinates of the three corners be (x1, y1), (x2, y2), and (x3, y3). And coordinates of the given point P be (x, y)
- Calculate the area of the given triangle, i.e., the area of the triangle ABC in the above diagram.
Area A = [ x1(y2 – y3) + x2(y3 – y1) + x3(y1-y2)]/2 - Calculate the area of the triangle PAB. We can use the same formula for this. Let this area be A1.
- Calculate the area of the triangle PBC. Let this area be A2.
- Calculate the area of the triangle PAC. Let this area be A3.
- If P lies inside the triangle, then A1 + A2 + A3 must be equal to A.
C++
#include <bits/stdc++.h> using namespace std; /* A utility function to calculate area of triangle formed by (x1, y1), (x2, y2) and (x3, y3) */ float area( int x1, int y1, int x2, int y2, int x3, int y3) { return abs ((x1*(y2-y3) + x2*(y3-y1)+ x3*(y1-y2))/2.0); } /* A function to check whether point P(x, y) lies inside the triangle formed by A(x1, y1), B(x2, y2) and C(x3, y3) */ bool isInside( int x1, int y1, int x2, int y2, int x3, int y3, int x, int y) { /* Calculate area of triangle ABC */ float A = area (x1, y1, x2, y2, x3, y3); /* Calculate area of triangle PBC */ float A1 = area (x, y, x2, y2, x3, y3); /* Calculate area of triangle PAC */ float A2 = area (x1, y1, x, y, x3, y3); /* Calculate area of triangle PAB */ float A3 = area (x1, y1, x2, y2, x, y); /* Check if sum of A1, A2 and A3 is same as A */ return (A == A1 + A2 + A3); } /* Driver program to test above function */ int main() { /* Let us check whether the point P(10, 15) lies inside the triangle formed by A(0, 0), B(20, 0) and C(10, 30) */ if (isInside(0, 0, 20, 0, 10, 30, 10, 15)) cout << "Inside" ; else cout << "Not Inside" ; return 0; } // this code is contributed by shivanisinghss2110 |
C
#include <stdio.h> #include <math.h> #include <stdbool.h> #include <stdlib.h> /* A utility function to calculate area of triangle formed by (x1, y1), (x2, y2) and (x3, y3) */ float area( int x1, int y1, int x2, int y2, int x3, int y3) { return abs ((x1*(y2-y3) + x2*(y3-y1)+ x3*(y1-y2))/2.0); } /* A function to check whether point P(x, y) lies inside the triangle formed by A(x1, y1), B(x2, y2) and C(x3, y3) */ bool isInside( int x1, int y1, int x2, int y2, int x3, int y3, int x, int y) { /* Calculate area of triangle ABC */ float A = area (x1, y1, x2, y2, x3, y3); /* Calculate area of triangle PBC */ float A1 = area (x, y, x2, y2, x3, y3); /* Calculate area of triangle PAC */ float A2 = area (x1, y1, x, y, x3, y3); /* Calculate area of triangle PAB */ float A3 = area (x1, y1, x2, y2, x, y); /* Check if sum of A1, A2 and A3 is same as A */ return (A == A1 + A2 + A3); } /* Driver program to test above function */ int main() { /* Let us check whether the point P(10, 15) lies inside the triangle formed by A(0, 0), B(20, 0) and C(10, 30) */ if (isInside(0, 0, 20, 0, 10, 30, 10, 15)) printf ( "Inside" ); else printf ( "Not Inside" ); return 0; } |
Java
// JAVA Code for Check whether a given point // lies inside a triangle or not import java.util.*; class GFG { /* A utility function to calculate area of triangle formed by (x1, y1) (x2, y2) and (x3, y3) */ static double area( int x1, int y1, int x2, int y2, int x3, int y3) { return Math.abs((x1*(y2-y3) + x2*(y3-y1)+ x3*(y1-y2))/ 2.0 ); } /* A function to check whether point P(x, y) lies inside the triangle formed by A(x1, y1), B(x2, y2) and C(x3, y3) */ static boolean isInside( int x1, int y1, int x2, int y2, int x3, int y3, int x, int y) { /* Calculate area of triangle ABC */ double A = area (x1, y1, x2, y2, x3, y3); /* Calculate area of triangle PBC */ double A1 = area (x, y, x2, y2, x3, y3); /* Calculate area of triangle PAC */ double A2 = area (x1, y1, x, y, x3, y3); /* Calculate area of triangle PAB */ double A3 = area (x1, y1, x2, y2, x, y); /* Check if sum of A1, A2 and A3 is same as A */ return (A == A1 + A2 + A3); } /* Driver program to test above function */ public static void main(String[] args) { /* Let us check whether the point P(10, 15) lies inside the triangle formed by A(0, 0), B(20, 0) and C(10, 30) */ if (isInside( 0 , 0 , 20 , 0 , 10 , 30 , 10 , 15 )) System.out.println( "Inside" ); else System.out.println( "Not Inside" ); } } // This code is contributed by Arnav Kr. Mandal. |
Python
# A utility function to calculate area # of triangle formed by (x1, y1), # (x2, y2) and (x3, y3) def area(x1, y1, x2, y2, x3, y3): return abs ((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0 ) # A function to check whether point P(x, y) # lies inside the triangle formed by # A(x1, y1), B(x2, y2) and C(x3, y3) def isInside(x1, y1, x2, y2, x3, y3, x, y): # Calculate area of triangle ABC A = area (x1, y1, x2, y2, x3, y3) # Calculate area of triangle PBC A1 = area (x, y, x2, y2, x3, y3) # Calculate area of triangle PAC A2 = area (x1, y1, x, y, x3, y3) # Calculate area of triangle PAB A3 = area (x1, y1, x2, y2, x, y) # Check if sum of A1, A2 and A3 # is same as A if (A = = A1 + A2 + A3): return True else : return False # Driver program to test above function # Let us check whether the point P(10, 15) # lies inside the triangle formed by # A(0, 0), B(20, 0) and C(10, 30) if (isInside( 0 , 0 , 20 , 0 , 10 , 30 , 10 , 15 )): print ( 'Inside' ) else : print ( 'Not Inside' ) # This code is contributed by Danish Raza |
C#
// C# Code to Check whether a given point // lies inside a triangle or not using System; class GFG { /* A utility function to calculate area of triangle formed by (x1, y1) (x2, y2) and (x3, y3) */ static double area( int x1, int y1, int x2, int y2, int x3, int y3) { return Math.Abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0); } /* A function to check whether point P(x, y) lies inside the triangle formed by A(x1, y1), B(x2, y2) and C(x3, y3) */ static bool isInside( int x1, int y1, int x2, int y2, int x3, int y3, int x, int y) { /* Calculate area of triangle ABC */ double A = area(x1, y1, x2, y2, x3, y3); /* Calculate area of triangle PBC */ double A1 = area(x, y, x2, y2, x3, y3); /* Calculate area of triangle PAC */ double A2 = area(x1, y1, x, y, x3, y3); /* Calculate area of triangle PAB */ double A3 = area(x1, y1, x2, y2, x, y); /* Check if sum of A1, A2 and A3 is same as A */ return (A == A1 + A2 + A3); } /* Driver program to test above function */ public static void Main() { /* Let us check whether the point P(10, 15) lies inside the triangle formed by A(0, 0), B(20, 0) and C(10, 30) */ if (isInside(0, 0, 20, 0, 10, 30, 10, 15)) Console.WriteLine( "Inside" ); else Console.WriteLine( "Not Inside" ); } } // This code is contributed by vt_m. |
PHP
<?php /* A utility function to calculate area of triangle formed by (x1, y1), (x2, y2) and (x3, y3) */ function area( $x1 , $y1 , $x2 , $y2 , $x3 , $y3 ) { return abs (( $x1 * ( $y2 - $y3 ) + $x2 * ( $y3 - $y1 ) + $x3 * ( $y1 - $y2 )) / 2.0); } /* A function to check whether P(x, y) lies inside the triangle formed by A(x1, y1), B(x2, y2) and C(x3, y3) */ function isInside( $x1 , $y1 , $x2 , $y2 , $x3 , $y3 , $x , $y ) { /* Calculate area of triangle ABC */ $A = area ( $x1 , $y1 , $x2 , $y2 , $x3 , $y3 ); /* Calculate area of triangle PBC */ $A1 = area ( $x , $y , $x2 , $y2 , $x3 , $y3 ); /* Calculate area of triangle PAC */ $A2 = area ( $x1 , $y1 , $x , $y , $x3 , $y3 ); /* Calculate area of triangle PAB */ $A3 = area ( $x1 , $y1 , $x2 , $y2 , $x , $y ); /* Check if sum of A1, A2 and A3 is same as A */ return ( $A == $A1 + $A2 + $A3 ); } // Driver Code /* Let us check whether the P(10, 15) lies inside the triangle formed by A(0, 0), B(20, 0) and C(10, 30) */ if (isInside(0, 0, 20, 0, 10, 30, 10, 15)) echo "Inside" ; else echo "Not Inside" ; // This code is contributed by anuj_67. ?> |
Javascript
<script> /* A utility function to calculate area of triangle formed by (x1, y1), (x2, y2) and (x3, y3) */ function area(x1, y1, x2, y2, x3, y3) { return Math.abs((x1*(y2-y3) + x2*(y3-y1)+ x3*(y1-y2))/2.0); } /* A function to check whether point P(x, y) lies inside the triangle formed by A(x1, y1), B(x2, y2) and C(x3, y3) */ function isInside(x1, y1, x2, y2, x3, y3, x, y) { /* Calculate area of triangle ABC */ let A = area (x1, y1, x2, y2, x3, y3); /* Calculate area of triangle PBC */ let A1 = area (x, y, x2, y2, x3, y3); /* Calculate area of triangle PAC */ let A2 = area (x1, y1, x, y, x3, y3); /* Calculate area of triangle PAB */ let A3 = area (x1, y1, x2, y2, x, y); /* Check if sum of A1, A2 and A3 is same as A */ return (A == A1 + A2 + A3); } /* Driver program to test above function */ /* Let us check whether the point P(10, 15) lies inside the triangle formed by A(0, 0), B(20, 0) and C(10, 30) */ if (isInside(0, 0, 20, 0, 10, 30, 10, 15)) document.write( "Inside" ); else document.write( "Not Inside" ); // This code is contributed by Mayank Tyagi </script> |
Inside
Time Complexity: O(1)
Auxiliary Space: O(1)
Exercise: Given coordinates of four corners of a rectangle, and a point P. Write a function to check whether P lies inside the given rectangle or not.
Another Approach – Using Barycentric Coordinate Method: Below is the algorithm to check if a point P lies inside a triangle ABC using the Barycentric Coordinate Method:
- Define a function “isInsideTriangle” that takes four input parameters: A, B, C, and P.
- Calculate the barycentric coordinates of point P with respect to the triangle ABC. To do this, we first need to calculate the area of the triangle ABC. We can use the cross product to find the area of the triangle ABC as:
Area(ABC) = 0.5 * ||AB x AC||, where ||AB x AC|| is the magnitude of the cross product of vectors AB and AC.
- Then, we can calculate the barycentric coordinates of point P as:
- a = 0.5 * ||PB x PC|| / Area(ABC)
- b = 0.5 * ||PC x PA|| / Area(ABC)
- c = 0.5 * ||PA x PB|| / Area(ABC), where PB, PC, and PA are vectors from point P to vertices B, C, and A, respectively.
- If all three barycentric coordinates are non-negative, then the point P lies inside the triangle ABC. Return “Inside”. Otherwise, point P lies outside the triangle ABC. Return “Outside”.
Below is the implementation of the above approach:
C++
// c++ code addition #include<iostream> #include<vector> using namespace std; // Function to check if the point is inside // the triangle or not string isInsideTriangle(vector< int > A, vector< int > B, vector< int > C, vector< int > P) { // Calculate the barycentric coordinates // of point P with respect to triangle ABC double denominator = ((B[1] - C[1]) * (A[0] - C[0]) + (C[0] - B[0]) * (A[1] - C[1])); double a = ((B[1] - C[1]) * (P[0] - C[0]) + (C[0] - B[0]) * (P[1] - C[1])) / denominator; double b = ((C[1] - A[1]) * (P[0] - C[0]) + (A[0] - C[0]) * (P[1] - C[1])) / denominator; double c = 1 - a - b; // Check if all barycentric coordinates // are non-negative if (a >= 0 && b >= 0 && c >= 0) { return "Inside" ; } else { return "Outside" ; } } // Driver Code int main() { vector< int > A = {0, 0}; vector< int > B = {10, 30}; vector< int > C = {20, 0}; vector< int > P = {10, 15}; // Call the isInsideTriangle function with // the given inputs string result = isInsideTriangle(A, B, C, P); // Print the result cout << result << endl; return 0; } // The code is contributed by Arushi Goel. |
Java
import java.awt.Point; class Main { // Function to check if the point is inside // the triangle or not public static String isInsideTriangle(Point A, Point B, Point C, Point P) { // Calculate the barycentric coordinates // of point P with respect to triangle ABC double denominator = ((B.y - C.y) * (A.x - C.x) + (C.x - B.x) * (A.y - C.y)); double a = ((B.y - C.y) * (P.x - C.x) + (C.x - B.x) * (P.y - C.y)) / denominator; double b = ((C.y - A.y) * (P.x - C.x) + (A.x - C.x) * (P.y - C.y)) / denominator; double c = 1 - a - b; // Check if all barycentric coordinates // are non-negative if (a >= 0 && b >= 0 && c >= 0 ) { return "Inside" ; } else { return "Outside" ; } } public static void main(String[] args) { Point A = new Point( 0 , 0 ); Point B = new Point( 10 , 30 ); Point C = new Point( 20 , 0 ); Point P = new Point( 10 , 15 ); // Call the isInsideTriangle function with // the given inputs String result = isInsideTriangle(A, B, C, P); // Print the result System.out.println(result); } } |
Python3
# Python program for the above approach # Function to check if the point is inside # the triangle or not def isInsideTriangle(A, B, C, P): # Calculate the barycentric coordinates # of point P with respect to triangle ABC denominator = ((B[ 1 ] - C[ 1 ]) * (A[ 0 ] - C[ 0 ]) + (C[ 0 ] - B[ 0 ]) * (A[ 1 ] - C[ 1 ])) a = ((B[ 1 ] - C[ 1 ]) * (P[ 0 ] - C[ 0 ]) + (C[ 0 ] - B[ 0 ]) * (P[ 1 ] - C[ 1 ])) / denominator b = ((C[ 1 ] - A[ 1 ]) * (P[ 0 ] - C[ 0 ]) + (A[ 0 ] - C[ 0 ]) * (P[ 1 ] - C[ 1 ])) / denominator c = 1 - a - b # Check if all barycentric coordinates # are non-negative if a > = 0 and b > = 0 and c > = 0 : return "Inside" else : return "Outside" # Driver Code A = ( 0 , 0 ) B = ( 10 , 30 ) C = ( 20 , 0 ) P = ( 10 , 15 ) # Call the isInsideTriangle function with # the given inputs result = isInsideTriangle(A, B, C, P) # Print the result print (result) |
Javascript
// JavaScript program for the above approach // Function to check if the point is inside // the triangle or not function isInsideTriangle(A, B, C, P) { // Calculate the barycentric coordinates // of point P with respect to triangle ABC let denominator = ((B[1] - C[1]) * (A[0] - C[0]) + (C[0] - B[0]) * (A[1] - C[1])); let a = ((B[1] - C[1]) * (P[0] - C[0]) + (C[0] - B[0]) * (P[1] - C[1])) / denominator; let b = ((C[1] - A[1]) * (P[0] - C[0]) + (A[0] - C[0]) * (P[1] - C[1])) / denominator; let c = 1 - a - b; // Check if all barycentric coordinates // are non-negative if (a >= 0 && b >= 0 && c >= 0) { return "Inside" ; } else { return "Outside" ; } } // Driver Code let A = [0, 0]; let B = [10, 30]; let C = [20, 0]; let P = [10, 15]; // Call the isInsideTriangle function with // the given inputs let result = isInsideTriangle(A, B, C, P); // Print the result console.log(result); |
Inside
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...