Given coordinate of the center and radius > 1 of a circle and the equation of a line. The task is to check if the given line collides with the circle or not. There are three possibilities :
- Line intersects the circle.
- Line touches the circle.
- Line is outside the circle

Note: General equation of a line is a*x + b*y + c = 0, so only constant a, b, c are given in the input.
Examples :
Input : radius = 5, center = (0, 0),
a = 1, b = -1, c = 0.
Output : Intersect
Input : radius = 5, center = (0, 0),
a = 5, b = 0, c = 0.
Output : Intersect
Input : radius = 5, center = (0, 0),
a = 1, b = 1, c = -16.
Output : Outside
The idea is to compare the perpendicular distance between center of circle and line with the radius of the circle.
Algorithm:
1. Find the perpendicular (say p) between center of circle and given line.
2. Compare this distance p with radius r.
……a) If p > r, then line lie outside the circle.
……b) If p = r, then line touches the circle.
……c) If p < r, then line intersect the circle.
How to find the perpendicular distance?
Distance of a line from a point can be computed using below formula:

C++
#include <bits/stdc++.h>
using namespace std;
void checkCollision( int a, int b, int c,
int x, int y, int radius)
{
int dist = ( abs (a * x + b * y + c)) /
sqrt (a * a + b * b);
if (radius == dist)
cout << "Touch" << endl;
else if (radius > dist)
cout << "Intersect" << endl;
else
cout << "Outside" << endl;
}
int main()
{
int radius = 5;
int x = 0, y = 0;
int a = 3, b = 4, c = 25;
checkCollision(a, b, c, x, y, radius);
return 0;
}
|
Java
import java.io.*;
class GFG {
static void checkCollision( int a, int b, int c,
int x, int y, int radius)
{
double dist = (Math.abs(a * x + b * y + c)) /
Math.sqrt(a * a + b * b);
if (radius == dist)
System.out.println ( "Touch" );
else if (radius > dist)
System.out.println( "Intersect" ) ;
else
System.out.println( "Outside" ) ;
}
public static void main (String[] args)
{
int radius = 5 ;
int x = 0 , y = 0 ;
int a = 3 , b = 4 , c = 25 ;
checkCollision(a, b, c, x, y, radius);
}
}
|
Python3
import math
def checkCollision(a, b, c, x, y, radius):
dist = (( abs (a * x + b * y + c)) /
math.sqrt(a * a + b * b))
if (radius = = dist):
print ( "Touch" )
elif (radius > dist):
print ( "Intersect" )
else :
print ( "Outside" )
radius = 5
x = 0
y = 0
a = 3
b = 4
c = 25
checkCollision(a, b, c, x, y, radius)
|
C#
using System;
class GFG {
static void checkCollision( int a, int b, int c,
int x, int y, int radius)
{
double dist = (Math.Abs(a * x + b * y + c)) /
Math.Sqrt(a * a + b * b);
if (radius == dist)
Console.WriteLine ( "Touch" );
else if (radius > dist)
Console.WriteLine( "Intersect" );
else
Console.WriteLine( "Outside" );
}
public static void Main ()
{
int radius = 5;
int x = 0, y = 0;
int a = 3, b = 4, c = 25;
checkCollision(a, b, c, x, y, radius);
}
}
|
Javascript
<script>
function checkCollision(a, b, c, x, y, radius)
{
let dist = (Math.abs(a * x + b * y + c)) /
Math.sqrt(a * a + b * b);
if (radius == dist)
document.write ( "Touch" );
else if (radius > dist)
document.write( "Intersect" ) ;
else
document.write( "Outside" ) ;
}
let radius = 5;
let x = 0, y = 0;
let a = 3, b = 4, c = 25;
checkCollision(a, b, c, x, y, radius);
</script>
|
PHP
<?php
function checkCollision( $a , $b , $c ,
$x , $y , $radius )
{
$dist = ( abs ( $a * $x + $b * $y + $c )) /
sqrt( $a * $a + $b * $b );
if ( $radius == $dist )
echo "Touch" ;
else if ( $radius > $dist )
echo "Intersect" ;
else
echo "Outside" ;
}
$radius = 5;
$x = 0;
$y = 0;
$a = 3;
$b = 4;
$c = 25;
checkCollision( $a , $b , $c , $x , $y , $radius );
?>
|
Time Complexity : O(log(a*a + b*b)) as it is using inbuilt sqrt function
Auxiliary Space : O(1)
This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.