# Klee’s Algorithm (Length Of Union Of Segments of a line)

• Difficulty Level : Medium
• Last Updated : 16 Jun, 2022

Given starting and ending positions of segments on a line, the task is to take the union of all given segments and find length covered by these segments.
Examples:

```Input : segments[] = {{2, 5}, {4, 8}, {9, 12}}
Output : 9
Explanation:
segment 1 = {2, 5}
segment 2 = {4, 8}
segment 3 = {9, 12}
If we take the union of all the line segments,
we cover distances [2, 8] and [9, 12]. Sum of
these two distances is 9 (6 + 3)```

Approach:

The algorithm was proposed by Klee in 1977. The time complexity of the algorithm is O (N log N). It has been proven that this algorithm is the fastest (asymptotically) and this problem can not be solved with a better complexity.

Description :
1) Put all the coordinates of all the segments in an auxiliary array points[].
2) Sort it on the value of the coordinates.
3) An additional condition for sorting – if there are equal coordinates, insert the one which is the left coordinate of any segment instead of a right one.
4) Now go through the entire array, with the counter “count” of overlapping segments.
5) If the count is greater than zero, then the result is added to the difference between the points[i] – points[i-1].
6) If the current element belongs to the left end, we increase “count”, otherwise reduce it.
Illustration:

```Lets take the example :
segment 1 : (2,5)
segment 2 : (4,8)
segment 3 : (9,12)

Counter = result = 0;
n = number of segments = 3;

for i=0,  points = {2, false}
points = {5, true}
for i=1,  points = {4, false}
points = {8, true}
for i=2,  points = {9, false}
points = {12, true}

Therefore :
points = {2, 5, 4, 8, 9, 12}
{f, t, f, t, f, t}

after applying sorting :
points = {2, 4, 5, 8, 9, 12}
{f, f, t, t, f, t}

Now,
for i=0, result = 0;
Counter = 1;

for i=1, result = 2;
Counter = 2;

for i=2, result = 3;
Counter = 1;

for i=3, result = 6;
Counter = 0;

for i=4, result = 6;
Counter = 1;

for i=5, result = 9;
Counter = 0;

## C++

 `// C++ program to implement Klee's algorithm``#include``using` `namespace` `std;` `// Returns sum of lengths covered by union of given``// segments``int` `segmentUnionLength(``const` `vector<``                          ``pair <``int``,``int``> > &seg)``{``    ``int` `n = seg.size();` `    ``// Create a vector to store starting and ending``    ``// points``    ``vector > points(n * 2);``    ``for` `(``int` `i = 0; i < n; i++)``    ``{``        ``points[i*2]     = make_pair(seg[i].first, ``false``);``        ``points[i*2 + 1] = make_pair(seg[i].second, ``true``);``    ``}` `    ``// Sorting all points by point value``    ``sort(points.begin(), points.end());` `    ``int` `result = 0; ``// Initialize result` `    ``// To keep track of counts of``    ``// current open segments``    ``// (Starting point is processed,``    ``// but ending point``    ``// is not)``    ``int` `Counter = 0;` `    ``// Traverse through all points``    ``for` `(unsigned i=0; i > segments;``    ``segments.push_back(make_pair(2, 5));``    ``segments.push_back(make_pair(4, 8));``    ``segments.push_back(make_pair(9, 12));``    ``cout << segmentUnionLength(segments) << endl;``    ``return` `0;``}`

## Java

 `// Java program to implement Klee's algorithm``import` `java.io.*;``import` `java.util.*;` `class` `GFG {` `  ``// to use create a pair of segments``  ``static` `class` `SegmentPair``  ``{``    ``int` `x,y;``    ``SegmentPair(``int` `xx, ``int` `yy){``      ``this``.x = xx;``      ``this``.y = yy;``    ``}``  ``}` `  ``//to create a pair of points``  ``static` `class` `PointPair{``    ``int` `x;``    ``boolean` `isEnding;``    ``PointPair(``int` `xx, ``boolean` `end){``      ``this``.x = xx;``      ``this``.isEnding = end;``    ``}``  ``}` `  ``// creates the comparator for comparing objects of PointPair class``  ``static` `class` `Comp ``implements` `Comparator``  ``{``    ` `    ``// override the compare() method``    ``public` `int` `compare(PointPair p1, PointPair p2)``    ``{``      ``if` `(p1.x < p2.x) {``        ``return` `-``1``;``      ``}``      ``else` `{``        ``if``(p1.x == p2.x){``          ``return` `0``;``        ``}``else``{``          ``return` `1``;``        ``}``      ``}``    ``}``  ``}` `  ``public` `static` `int` `segmentUnionLength(List segments){``    ``int` `n = segments.size();` `    ``// Create a list to store``    ``// starting and ending points``    ``List points = ``new` `ArrayList<>();``    ``for``(``int` `i = ``0``; i < n; i++){``      ``points.add(``new` `PointPair(segments.get(i).x,``false``));``      ``points.add(``new` `PointPair(segments.get(i).y,``true``));``    ``}``    ` `    ``// Sorting all points by point value``    ``Collections.sort(points, ``new` `Comp());` `    ``int` `result = ``0``; ``// Initialize result` `    ``// To keep track of counts of``    ``// current open segments``    ``// (Starting point is processed,``    ``// but ending point``    ``// is not)``    ``int` `Counter = ``0``;` `    ``// Traverse through all points``    ``for``(``int` `i = ``0``; i < ``2` `* n; i++)``    ``{``      ` `      ``// If there are open points, then we add the``      ``// difference between previous and current point.``      ``// This is interesting as we don't check whether``      ``// current point is opening or closing,``      ``if` `(Counter != ``0``)``      ``{``        ``result += (points.get(i).x - points.get(i-``1``).x);``      ``}` `      ``// If this is an ending point, reduce, count of``      ``// open points.``      ``if``(points.get(i).isEnding)``      ``{``        ``Counter--;``      ``}``      ``else``      ``{``        ``Counter++;``      ``}``    ``}``    ``return` `result;``  ``}` `  ``// Driver Code``  ``public` `static` `void` `main (String[] args) {``    ``List segments = ``new` `ArrayList<>();``    ``segments.add(``new` `SegmentPair(``2``,``5``));``    ``segments.add(``new` `SegmentPair(``4``,``8``));``    ``segments.add(``new` `SegmentPair(``9``,``12``));``    ``System.out.println(segmentUnionLength(segments));``  ``}``}` `// This code is contributed by shruti456rawal`

## Python3

 `# Python program for the above approach` `def` `segmentUnionLength(segments):``  ` `    ``# Size of given segments list``    ``n ``=` `len``(segments)``    ` `    ``# Initialize empty points container``    ``points ``=` `[``None``] ``*` `(n ``*` `2``)``    ` `    ``# Create a vector to store starting``    ``# and ending points``    ``for` `i ``in` `range``(n):``        ``points[i ``*` `2``] ``=` `(segments[i][``0``], ``False``)``        ``points[i ``*` `2` `+` `1``] ``=` `(segments[i][``1``], ``True``)``        ` `    ``# Sorting all points by point value``    ``points ``=` `sorted``(points, key``=``lambda` `x: x[``0``])``    ` `    ``# Initialize result as 0``    ``result ``=` `0``    ` `    ``# To keep track of counts of current open segments``    ``# (Starting point is processed, but ending point``    ``# is not)``    ``Counter ``=` `0``    ` `    ``# Traverse through all points``    ``for` `i ``in` `range``(``0``, n ``*` `2``):``      ` `        ``# If there are open points, then we add the``        ``# difference between previous and current point.``        ``if` `(i > ``0``) & (points[i][``0``] > points[i ``-` `1``][``0``]) &  (Counter > ``0``):``            ``result ``+``=` `(points[i][``0``] ``-` `points[i ``-` `1``][``0``])``            ` `        ``# If this is an ending point, reduce, count of``        ``# open points.``        ``if` `points[i][``1``]:``            ``Counter ``-``=` `1``        ``else``:``            ``Counter ``+``=` `1``    ``return` `result`  `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ``segments ``=` `[(``2``, ``5``), (``4``, ``8``), (``9``, ``12``)]``    ``print``(segmentUnionLength(segments))`

## Javascript

 `// JavaScript program to implement Klee's algorithm` `// Returns sum of lengths covered by union of given``// segments``function` `segmentUnionLength(seg)``{``    ``let n = seg.length;` `    ``// Create a vector to store starting and ending``    ``// points``    ``let points = ``new` `Array(2*n);``    ``for` `(let i = 0; i < n; i++)``    ``{``        ``points[i*2] = [seg[i], ``false``];``        ``points[i*2 + 1] = [seg[i], ``true``];``    ``}` `    ``// Sorting all points by point value``    ``points.sort(``function``(a, b){``        ``return` `a - b;``    ``});``    ` `    ``let result = 0; ``// Initialize result` `    ``// To keep track of counts of``    ``// current open segments``    ``// (Starting point is processed,``    ``// but ending point``    ``// is not)``    ``let Counter = 0;` `    ``// Traverse through all points``    ``for` `(let i=0; i

Output

`9`

Time Complexity : O(n * log n)
Auxiliary Space: O(n)

This article is contributed by Aarti_Rathi and Abhinandan Mittal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.