Given starting and ending positions of segments on a line, the task is to take the union of all given segments and find length covered by these segments.
Examples:
Input : segments[] = {{2, 5}, {4, 8}, {9, 12}}
Output : 9
Explanation:
segment 1 = {2, 5}
segment 2 = {4, 8}
segment 3 = {9, 12}
If we take the union of all the line segments,
we cover distances [2, 8] and [9, 12]. Sum of
these two distances is 9 (6 + 3)
Approach:
The algorithm was proposed by Klee in 1977. The time complexity of the algorithm is O (N log N). It has been proven that this algorithm is the fastest (asymptotically) and this problem can not be solved with a better complexity.
Description :
1) Put all the coordinates of all the segments in an auxiliary array points[].
2) Sort it on the value of the coordinates.
3) An additional condition for sorting – if there are equal coordinates, insert the one which is the left coordinate of any segment instead of a right one.
4) Now go through the entire array, with the counter “count” of overlapping segments.
5) If the count is greater than zero, then the result is added to the difference between the points[i] – points[i-1].
6) If the current element belongs to the left end, we increase “count”, otherwise reduce it.
Illustration:
Lets take the example :
segment 1 : (2,5)
segment 2 : (4,8)
segment 3 : (9,12)
Counter = result = 0;
n = number of segments = 3;
for i=0, points[0] = {2, false}
points[1] = {5, true}
for i=1, points[2] = {4, false}
points[3] = {8, true}
for i=2, points[4] = {9, false}
points[5] = {12, true}
Therefore :
points = {2, 5, 4, 8, 9, 12}
{f, t, f, t, f, t}
after applying sorting :
points = {2, 4, 5, 8, 9, 12}
{f, f, t, t, f, t}
Now,
for i=0, result = 0;
Counter = 1;
for i=1, result = 2;
Counter = 2;
for i=2, result = 3;
Counter = 1;
for i=3, result = 6;
Counter = 0;
for i=4, result = 6;
Counter = 1;
for i=5, result = 9;
Counter = 0;
Final answer = 9;
C++
#include<bits/stdc++.h>
using namespace std;
int segmentUnionLength( const vector<
pair < int , int > > &seg)
{
int n = seg.size();
vector <pair < int , bool > > points(n * 2);
for ( int i = 0; i < n; i++)
{
points[i*2] = make_pair(seg[i].first, false );
points[i*2 + 1] = make_pair(seg[i].second, true );
}
sort(points.begin(), points.end());
int result = 0;
int Counter = 0;
for (unsigned i=0; i<n*2; i++)
{
if (Counter)
result += (points[i].first -
points[i-1].first);
(points[i].second)? Counter-- : Counter++;
}
return result;
}
int main()
{
vector< pair < int , int > > segments;
segments.push_back(make_pair(2, 5));
segments.push_back(make_pair(4, 8));
segments.push_back(make_pair(9, 12));
cout << segmentUnionLength(segments) << endl;
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class GFG {
static class SegmentPair
{
int x,y;
SegmentPair( int xx, int yy){
this .x = xx;
this .y = yy;
}
}
static class PointPair{
int x;
boolean isEnding;
PointPair( int xx, boolean end){
this .x = xx;
this .isEnding = end;
}
}
static class Comp implements Comparator<PointPair>
{
public int compare(PointPair p1, PointPair p2)
{
if (p1.x < p2.x) {
return - 1 ;
}
else {
if (p1.x == p2.x){
return 0 ;
} else {
return 1 ;
}
}
}
}
public static int segmentUnionLength(List<SegmentPair> segments){
int n = segments.size();
List<PointPair> points = new ArrayList<>();
for ( int i = 0 ; i < n; i++){
points.add( new PointPair(segments.get(i).x, false ));
points.add( new PointPair(segments.get(i).y, true ));
}
Collections.sort(points, new Comp());
int result = 0 ;
int Counter = 0 ;
for ( int i = 0 ; i < 2 * n; i++)
{
if (Counter != 0 )
{
result += (points.get(i).x - points.get(i- 1 ).x);
}
if (points.get(i).isEnding)
{
Counter--;
}
else
{
Counter++;
}
}
return result;
}
public static void main (String[] args) {
List<SegmentPair> segments = new ArrayList<>();
segments.add( new SegmentPair( 2 , 5 ));
segments.add( new SegmentPair( 4 , 8 ));
segments.add( new SegmentPair( 9 , 12 ));
System.out.println(segmentUnionLength(segments));
}
}
|
Python3
def segmentUnionLength(segments):
n = len (segments)
points = [ None ] * (n * 2 )
for i in range (n):
points[i * 2 ] = (segments[i][ 0 ], False )
points[i * 2 + 1 ] = (segments[i][ 1 ], True )
points = sorted (points, key = lambda x: x[ 0 ])
result = 0
Counter = 0
for i in range ( 0 , n * 2 ):
if (i > 0 ) & (points[i][ 0 ] > points[i - 1 ][ 0 ]) & (Counter > 0 ):
result + = (points[i][ 0 ] - points[i - 1 ][ 0 ])
if points[i][ 1 ]:
Counter - = 1
else :
Counter + = 1
return result
if __name__ = = '__main__' :
segments = [( 2 , 5 ), ( 4 , 8 ), ( 9 , 12 )]
print (segmentUnionLength(segments))
|
C#
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
class HelloWorld {
class GFG : IComparer<KeyValuePair< int , bool >>
{
public int Compare(KeyValuePair< int , bool > x,KeyValuePair< int , bool > y)
{
return x.Key.CompareTo(y.Key);
}
}
public static int segmentUnionLength(List<KeyValuePair< int , int >> seg)
{
int n = seg.Count;
List<KeyValuePair< int , bool >> points = new List<KeyValuePair< int , bool >>();
for ( int i = 0; i < 2*n; i++){
points.Add( new KeyValuePair< int , bool > (0, true ));
}
for ( int i = 0; i < n; i++)
{
points[i*2] = new KeyValuePair< int , bool > (seg[i].Key, false );
points[i*2 + 1] = new KeyValuePair< int , bool > (seg[i].Value, true );
}
GFG gg = new GFG();
points.Sort(gg);
int result = 0;
int Counter = 0;
for ( int i=0; i<n*2; i++)
{
if (Counter != 0)
result += (points[i].Key - points[i-1].Key);
if (points[i].Value != false ){
Counter--;
}
else {
Counter++;
}
}
return result;
}
static void Main() {
List<KeyValuePair< int , int >> segments = new List<KeyValuePair< int , int >> ();
segments.Add( new KeyValuePair< int , int > (2, 5));
segments.Add( new KeyValuePair< int , int > (4, 8));
segments.Add( new KeyValuePair< int , int > (9, 12));
Console.WriteLine(segmentUnionLength(segments));
}
}
|
Javascript
function segmentUnionLength(seg)
{
let n = seg.length;
let points = new Array(2*n);
for (let i = 0; i < n; i++)
{
points[i*2] = [seg[i][0], false ];
points[i*2 + 1] = [seg[i][1], true ];
}
points.sort( function (a, b){
return a[0] - b[0];
});
let result = 0;
let Counter = 0;
for (let i=0; i<n*2; i++)
{
if (Counter)
result += (points[i][0] - points[i-1][0]);
if (points[i][1]){
Counter = Counter - 1;
}
else {
Counter = Counter + 1;
}
}
return result;
}
let segments = new Array();
segments.push([2, 5]);
segments.push([4, 8]);
segments.push([9, 12]);
console.log(segmentUnionLength(segments));
|
Time Complexity : O(n * log n)
Auxiliary Space: O(n)
This article is contributed by Aarti_Rathi and Abhinandan Mittal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.