Given slant height, height and radius of a cone, we have to calculate the volume and surface area of the cone.
- Cone :
Cone is a three dimensional geometric shape. It consists of a base having the shape of a circle and a curved side (the lateral surface) ending up in a tip called the apex or vertex.

- Volume of a cone :
The volume of a cone is given by the formula –
volume = 1/3(pi * r * r * h)
- where r is the radius of the circular base, and h is the height (the perpendicular distance from the base to the vertex).
- Surface area of a cone :
The surface area of a cone is given by the formula –
area = pi * r * s + pi * r^2
- Where r is the radius of the circular base, and s is the slant height of the cone.
Examples :
Input :
radius = 5
slant_height = 13
height = 12
Output :
Volume Of Cone = 314.159
Surface Area Of Cone = 282.743
Input :
radius = 6
slant_height = 10
height = 8
Output :
Volume Of Cone = 301.593
Surface Area Of Cone = 301.593
C++
#include<iostream>
using namespace std;
float pi = 3.14159;
float volume( float r, float h)
{
return ( float (1) / float (3)) * pi *
r * r * h;
}
float surface_area( float r, float s)
{
return pi * r * s + pi * r * r;
}
int main()
{
float radius = 5;
float slant_height = 13;
float height = 12;
float vol, sur_area;
cout << "Volume Of Cone : "
<< volume(radius, height) << endl;
cout << "Surface Area Of Cone : "
<< surface_area(radius, slant_height);
return 0;
}
|
Java
class GFG
{
static float pi = 3 .14159f;
public static float volume( float r,
float h)
{
return ( float ) 1 / 3 * pi * h *
r * r;
}
public static float surface_area( float r,
float s)
{
return pi * r * s + pi * r * r;
}
public static void main(String args[])
{
float radius = 5 ;
float slant_height = 13 ;
float height = 12 ;
float vol, sur_area;
System.out.print( "Volume Of Cone : " );
System.out.println(volume(radius, height));
System.out.print( "Surface Area Of Cone : " );
System.out.println(surface_area(radius,
slant_height));
}
}
|
Python
import math
pi = math.pi
def volume(r, h):
return ( 1 / 3 ) * pi * r * r * h
def surfacearea(r, s):
return pi * r * s + pi * r * r
radius = float ( 5 )
height = float ( 12 )
slat_height = float ( 13 )
print ( "Volume Of Cone : " , volume(radius, height) )
print ( "Surface Area Of Cone : " , surfacearea(radius, slat_height) )
|
C#
using System;
class GFG
{
static float pi = 3.14159f;
public static float volume( float r,
float h)
{
return ( float )1 / 3 * pi * h *
r * r;
}
public static float surface_area( float r,
float s)
{
return pi * r * s + pi * r * r;
}
public static void Main()
{
float radius = 5;
float slant_height = 13;
float height = 12;
Console.Write( "Volume Of Cone : " );
Console.WriteLine(volume(radius,
height));
Console.Write( "Surface Area Of Cone : " );
Console.WriteLine(surface_area(radius,
slant_height));
}
}
|
PHP
<?php
function volume( $r , $h )
{
$pi = 3.14159;
return (1 / 3) * $pi * $r *
$r * $h ;
}
function surface_area( $r , $s )
{
$pi = 3.14159;
return $pi * $r * $s + $pi *
$r * $r ;
}
$radius = 5;
$slant_height = 13;
$height = 12;
echo ( "Volume Of Cone : " );
echo ( volume( $radius , $height ));
echo ( "\n" );
echo ( "Surface Area Of Cone : " );
echo ( surface_area( $radius ,
$slant_height ));
?>
|
Javascript
<script>
const pi = 3.14159;
function volume( r, h)
{
return ((1) / (3)) * pi *
r * r * h;
}
function surface_area( r, s)
{
return pi * r * s + pi * r * r;
}
let radius = 5;
let slant_height = 13;
let height = 12;
let vol, sur_area;
document.write( "Volume Of Cone : "
+ volume(radius, height).toFixed(2) + "<br/>" );
document.write( "Surface Area Of Cone : "
+ surface_area(radius, slant_height).toFixed(2) + "<br/>" );
</script>
|
Output :
Volume Of Cone : 314.159
Surface Area Of Cone : 282.743
Time complexity : O(1)
Auxiliary Space : O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
17 Feb, 2023
Like Article
Save Article