Calculate volume and surface area of Torus

This article is about the surface and mathematical concept of a torus.
A 3D shape made by revolving a small circle (radius r) along a line made by a bigger circle (radius R).

Torus

Torus

Property:

  1. It can be made by revolving a small circle (radius r) along a line made by a bigger circle (radius R).
  2. It is not a polyhedron
  3. It has no vertices or edges
  • Surface Area
    The surface area of a Torus is given by the formula –

    Surface Area = 4 × Pi^2 × R × r

    Where r is the radius of the small circle and R is the radius of bigger circle and Pi is constant Pi=3.14159.

  • Volume
    The volume of a cone is given by the formula –

    Volume = 2 × Pi^2 × R × r^2

    Where r is the radius of the small circle and R is the radius of bigger circle and Pi is constant Pi=3.14159.

Examples:

Input : r=3, R=7
Output :
     Volume: 1243.568195
     Surface: 829.045464

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to calculate volume
// and surface area of Torus
#include<bits/stdc++.h>
using namespace std;
  
int main()
{
    // radus of inner circle
    double r = 3;
  
    // distance from origin to center of inner circle
    // radius of black circle in figure
    double R = 7;
  
    // Value of Pi
    float pi = (float)3.14159;
    double Volume = 0;
    Volume = 2 * pi * pi * R * r * r;
    cout<<"Volume: "<<Volume<<endl;
  
    double Surface = 4 * pi * pi * R * r;
    cout<<"Surface: "<<Surface<<endl;
}

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program to calculate volume 
// and surface area of Torus
#include <stdio.h>
int main()
{
    // radus of inner circle
    double r = 3;
  
    // distance from origin to center of inner circle
    // radius of black circle in figure
    double R = 7;
  
    // Value of Pi
    float pi = (float)3.14159;
    double Volume = 0;
    Volume = 2 * pi * pi * R * r * r;
    printf("Volume: %f", Volume);
  
    double Surface = 4 * pi * pi * R * r;
    printf("\nSurface: %f", Surface);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to calculate volume 
// and surface area of Torus
class Test {
  
    public static void main(String args[])
    {
  
        // radius of inner circle
        double r = 3;
  
        // distance from origin to center of inner circle
        // radius of black circle in figure
        double R = 7;
  
        // Value of Pi
        float pi = (float)3.14159;
        double Volume = 0;
        Volume = 2 * pi * pi * R * r * r;
        System.out.printf("Volume: %f", Volume);
  
        double Surface = 4 * pi * pi * R * r;
        System.out.printf("\nSurface: %f", Surface);
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to calculate volume
# and surface area of Torus
# radus of inner circle
r = 3
  
# distance from origin to center of inner circle
# radius of black circle in figure
R = 7
  
# Value of Pi
pi = 3.14159
Volume = (float)(2 * pi * pi * R * r * r);
print("Volume: ", Volume);
Surface = (float)(4 * pi * pi * R * r);
print("Surface: ", Surface);

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to calculate volume 
// and surface area of Torus 
using System;
  
class GFG 
      
// Driver Code
public static void Main() 
  
    // radius of inner circle 
    double r = 3; 
  
    // distance from origin to center 
    // of inner circle radius of black
    // circle in figure 
    double R = 7; 
  
    // Value of Pi 
    float pi = (float)3.14159; 
    double Volume = 0; 
    Volume = 2 * pi * pi * R * r * r; 
    Console.WriteLine("Volume: {0}", Volume); 
  
    double Surface = 4 * pi * pi * R * r; 
    Console.WriteLine("Surface: {0}", Surface); 
  
// This code is contributed by Soumik

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to calculate volume 
// and surface area of Torus 
  
// radus of inner circle 
$r = 3; 
  
// distance from origin to center 
// of inner circle radius of black
// circle in figure 
$R = 7; 
  
// Value of Pi 
$pi = (float)3.14159; 
$Volume = 0; 
$Volume = 2 * $pi * $pi * $R * $r * $r
  
echo "Volume: ", $Volume, "\n"
  
$Surface = 4 * $pi * $pi * $R * $r
  
echo "Surface: ", $Surface, "\n"
      
// This code is contributed by ajit
?>

chevron_right


Output:

Volume: 1243.568195
Surface: 829.045464


My Personal Notes arrow_drop_up

Strategy Path planning and Destination matters in success No need to worry about in between temporary failures

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.