# Area of a polygon with given n ordered vertices

Given ordered coordinates of a polygon with n vertices. Find area of the polygon. Here ordered mean that the coordinates are given either in clockwise manner or anticlockwise from first vertex to last.

Examples :

Input :  X[] = {0, 4, 4, 0}, Y[] = {0, 0, 4, 4};
Output : 16

Input : X[] = {0, 4, 2}, Y[] = {0, 0, 4}
Output : 8


We can compute area of a polygon using Shoelace formula.

Area = | 1/2 [ (x1y2 + x2y3 + ... + xn-1yn + xny1) -
(x2y1 + x3y2 + ... + xnyn-1 + x1yn) ] |



Below is implementation of above formula.

## CPP

 // C++ program to evaluate area of a polygon using  // shoelace formula  #include  using namespace std;     // (X[i], Y[i]) are coordinates of i'th point.  double polygonArea(double X[], double Y[], int n)  {      // Initialze area      double area = 0.0;         // Calculate value of shoelace formula      int j = n - 1;      for (int i = 0; i < n; i++)      {          area += (X[j] + X[i]) * (Y[j] - Y[i]);          j = i;  // j is previous vertex to i      }         // Return absolute value      return abs(area / 2.0);  }     // Driver program to test above function  int main()  {      double X[] = {0, 2, 4};      double Y[] = {1, 3, 7};         int n = sizeof(X)/sizeof(X);         cout << polygonArea(X, Y, n);  }

## Java

 // Java program to evaluate area   // of a polygon using shoelace formula  import java.io.*;     class GFG   {      // (X[i], Y[i]) are coordinates of i'th point.      public static double polygonArea(double X[], double Y[],                                                          int n)      {          // Initialze area          double area = 0.0;                 // Calculate value of shoelace formula          int j = n - 1;          for (int i = 0; i < n; i++)          {              area += (X[j] + X[i]) * (Y[j] - Y[i]);                             // j is previous vertex to i              j = i;           }                 // Return absolute value          return Math.abs(area / 2.0);      }         // Driver program       public static void main (String[] args)      {          double X[] = {0, 2, 4};          double Y[] = {1, 3, 7};                 int n = 3;          System.out.println(polygonArea(X, Y, n));      }     }  // This code is contributed by Sunnnysingh

## Python3

 # python3 program to evaluate  # area of a polygon using  # shoelace formula     # (X[i], Y[i]) are coordinates of i'th point.  def polygonArea(X, Y, n):         # Initialze area      area = 0.0        # Calculate value of shoelace formula      j = n - 1     for i in range(0,n):          area += (X[j] + X[i]) * (Y[j] - Y[i])          j = i   # j is previous vertex to i                # Return absolute value      return int(abs(area / 2.0))     # Driver program to test above function  X = [0, 2, 4]  Y = [1, 3, 7]  n = len(X)  print(polygonArea(X, Y, n))     # This code is contributed by  # Smitha Dinesh Semwal

## C#

 // C# program to evaluate area  // of a polygon using shoelace formula  using System;     class GFG {             // (X[i], Y[i]) are coordinates of i'th point.      public static double polygonArea(double[] X,                                 double[] Y, int n)      {                     // Initialze area          double area = 0.0;             // Calculate value of shoelace formula          int j = n - 1;                     for (int i = 0; i < n; i++) {              area += (X[j] + X[i]) * (Y[j] - Y[i]);                 // j is previous vertex to i              j = i;          }             // Return absolute value          return Math.Abs(area / 2.0);      }         // Driver program      public static void Main()      {          double[] X = { 0, 2, 4 };          double[] Y = { 1, 3, 7 };             int n = 3;          Console.WriteLine(polygonArea(X, Y, n));      }  }     // This code is contributed by vt_m.

## PHP

 

Output :

2

Why is it called Shoelace Formula?
The formula is called so because of the way we evaluate it.

Example :

Let the input vertices be
(0, 1), (2, 3), and (4, 7).

Evaluation procedure matches with process of tying
shoelaces.

We write vertices as below
0    1
2    3
4    7
0    1  [written twice]

we evaluate positive terms as below
0  \  1
2  \  3
4  \  7
0     1
i.e., 0*3 + 2*7 + 4*1 = 18

we evaluate negative terms as below
0     1
2  /  3
4  /  7
0  /  1
i.e., 0*7 + 4*3 + 2*1 = 14

Area = 1/2 (18 - 14) = 2

See this for a clearer image.


How does this work?
We can always divide a polygon into triangles. The area formula is derived by taking each edge AB, and calculating the (signed) area of triangle ABO with a vertex at the origin O, by taking the cross-product (which gives the area of a parallelogram) and dividing by 2. As one wraps around the polygon, these triangles with positive and negative area will overlap, and the areas between the origin and the polygon will be cancelled out and sum to 0, while only the area inside the reference triangle remains. [Source : Wiki]

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up

Improved By : jit_t

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.