Skip to content
Related Articles
Area of a polygon with given n ordered vertices
• Difficulty Level : Medium
• Last Updated : 02 Jun, 2021

Given ordered coordinates of a polygon with n vertices. Find the area of the polygon. Here ordered means that the coordinates are given either in a clockwise manner or anticlockwise from the first vertex to last.
Examples :

Input :  X[] = {0, 4, 4, 0}, Y[] = {0, 0, 4, 4};
Output : 16

Input : X[] = {0, 4, 2}, Y[] = {0, 0, 4}
Output : 8

We can compute the area of a polygon using the Shoelace formula.

Area = | 1/2 [ (x1y2 + x2y3 + … + xn-1yn + xny1) –

(x2y1 + x3y2 + … + xnyn-1 + x1yn) ] |

The above formula is derived by following the cross product of the vertices to get the Area of triangles formed in the polygon.
Below is an implementation of the above formula.

## CPP

 // C++ program to evaluate area of a polygon using// shoelace formula#include using namespace std; // (X[i], Y[i]) are coordinates of i'th point.double polygonArea(double X[], double Y[], int n){    // Initialize area    double area = 0.0;     // Calculate value of shoelace formula    int j = n - 1;    for (int i = 0; i < n; i++)    {        area += (X[j] + X[i]) * (Y[j] - Y[i]);        j = i;  // j is previous vertex to i    }     // Return absolute value    return abs(area / 2.0);} // Driver program to test above functionint main(){    double X[] = {0, 2, 4};    double Y[] = {1, 3, 7};     int n = sizeof(X)/sizeof(X);     cout << polygonArea(X, Y, n);}

## Java

 // Java program to evaluate area// of a polygon using shoelace formulaimport java.io.*; class GFG{    // (X[i], Y[i]) are coordinates of i'th point.    public static double polygonArea(double X[], double Y[],                                                       int n)    {        // Initialize area        double area = 0.0;             // Calculate value of shoelace formula        int j = n - 1;        for (int i = 0; i < n; i++)        {            area += (X[j] + X[i]) * (Y[j] - Y[i]);                         // j is previous vertex to i            j = i;        }             // Return absolute value        return Math.abs(area / 2.0);    }     // Driver program    public static void main (String[] args)    {        double X[] = {0, 2, 4};        double Y[] = {1, 3, 7};             int n = 3;        System.out.println(polygonArea(X, Y, n));    } }// This code is contributed by Sunnnysingh

## Python3

 # python3 program to evaluate# area of a polygon using# shoelace formula # (X[i], Y[i]) are coordinates of i'th point.def polygonArea(X, Y, n):     # Initialize area    area = 0.0     # Calculate value of shoelace formula    j = n - 1    for i in range(0,n):        area += (X[j] + X[i]) * (Y[j] - Y[i])        j = i   # j is previous vertex to i          # Return absolute value    return int(abs(area / 2.0)) # Driver program to test above functionX = [0, 2, 4]Y = [1, 3, 7]n = len(X)print(polygonArea(X, Y, n)) # This code is contributed by# Smitha Dinesh Semwal

## C#

 // C# program to evaluate area// of a polygon using shoelace formulausing System; class GFG {         // (X[i], Y[i]) are coordinates of i'th point.    public static double polygonArea(double[] X,                               double[] Y, int n)    {                 // Initialize area        double area = 0.0;         // Calculate value of shoelace formula        int j = n - 1;                 for (int i = 0; i < n; i++) {            area += (X[j] + X[i]) * (Y[j] - Y[i]);             // j is previous vertex to i            j = i;        }         // Return absolute value        return Math.Abs(area / 2.0);    }     // Driver program    public static void Main()    {        double[] X = { 0, 2, 4 };        double[] Y = { 1, 3, 7 };         int n = 3;        Console.WriteLine(polygonArea(X, Y, n));    }} // This code is contributed by vt_m.

## PHP

 

## Javascript

 

Output :

2

Why is it called Shoelace Formula?
The formula is called so because of the way we evaluate it.
Example :

Let the input vertices be
(0, 1), (2, 3), and (4, 7).

Evaluation procedure matches with process of tying
shoelaces.

We write vertices as below
0    1
2    3
4    7
0    1  [written twice]

we evaluate positive terms as below
0  \  1
2  \  3
4  \  7
0     1
i.e., 0*3 + 2*7 + 4*1 = 18

we evaluate negative terms as below
0     1
2  /  3
4  /  7
0  /  1
i.e., 0*7 + 4*3 + 2*1 = 14

Area = 1/2 (18 - 14) = 2

See this for a clearer image.

How does this work?
We can always divide a polygon into triangles. The area formula is derived by taking each edge AB and calculating the (signed) area of triangle ABO with a vertex at the origin O, by taking the cross-product (which gives the area of a parallelogram) and dividing by 2. As one wraps around the polygon, these triangles with positive and negative areas will overlap, and the areas between the origin and the polygon will be canceled out and sum to 0, while only the area inside the reference triangle remains. [Source: Wiki

For a better understanding look at the following diagrams: Area Of Triangle Using Cross Product Dividing Polygons into Smaller Triangles to compute Area Similarly, for Irregular Polygons, we can form triangles to compute the Area

Related articles :
Minimum Cost Polygon Triangulation
Find Simple Closed Path for a given set of points
This article is contributed by Utkarsh Trivedi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up