Open In App
Related Articles

Create a list from rows in Pandas DataFrame | Set 2

Improve Article
Improve
Save Article
Save
Like Article
Like

In an earlier post, we had discussed some approaches to extract the rows of the dataframe as a Python’s list. In this post, we will see some more methods to achieve that goal.

Note : For link to the CSV file used in the code, click here.

Solution #1: In order to access the data of each row of the Pandas dataframe, we can use DataFrame.iloc attribute and then we can append the data of each row to the end of the list.




# importing pandas as pd
import pandas as pd
  
# Create the dataframe
df = pd.DataFrame({'Date':['10/2/2011', '11/2/2011', '12/2/2011', '13/2/11'],
                    'Event':['Music', 'Poetry', 'Theatre', 'Comedy'],
                    'Cost':[10000, 5000, 15000, 2000]})
  
# Print the dataframe
print(df)


Output :

Now we will use the DataFrame.iloc attribute to access the values of each row in the dataframe and then we will construct a list out of it.




# Create an empty list
Row_list =[]
  
# Iterate over each row
for i in range((df.shape[0])):
  
    # Using iloc to access the values of 
    # the current row denoted by "i"
    Row_list.append(list(df.iloc[i, :]))
  
# Print the list
print(Row_list)


Output :

As we can see in the output, we have successfully extracted each row of the given dataframe into a list. Just like any other Python’s list we can perform any list operation on the extracted list.




# Find the length of the newly 
# created list
print(len(Row_list))
  
# Print the first 3 elements
print(Row_list[:3])


Output :


 
Solution #2: In order to access the data of each row of the Pandas dataframe we can use DataFrame.iat attribute and then we can append the data of each row to the end of the list.




# importing pandas as pd
import pandas as pd
  
# Create the dataframe
df = pd.DataFrame({'Date':['10/2/2011', '11/2/2011', '12/2/2011', '13/2/11'],
                    'Event':['Music', 'Poetry', 'Theatre', 'Comedy'],
                    'Cost':[10000, 5000, 15000, 2000]})
  
# Create an empty list
Row_list =[]
  
# Iterate over each row
for i in range((df.shape[0])):
    # Create a list to store the data
    # of the current row
    cur_row =[]
      
    # iterate over all the columns
    for j in range(df.shape[1]):
          
        # append the data of each
        # column to the list
        cur_row.append(df.iat[i, j])
          
    # append the current row to the list
    Row_list.append(cur_row)
  
# Print the list
print(Row_list)


Output :




# Find the length of the newly 
# created list
print(len(Row_list))
  
# Print the first 3 elements
print(Row_list[:3])


Output :


Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!

Last Updated : 29 Jan, 2019
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials