Open In App
Related Articles

Create and display a one-dimensional array-like object using Pandas in Python

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report
Series() is a function present in the Pandas library that creates a one-dimensional array and can hold any type of objects or data in it. In this article, let us learn the syntax, create and display one-dimensional array-like object containing an array of data using Pandas library.

pandas.Series()

Syntax : pandas.Series(parameters) Parameters :
  • data : Contains data stored in Series.
  • index : Values must be hashable and have the same length as data.
  • dtype : Data type for the output Series.
  • name : The name to give to the Series.
  • copy : Copy input data.
Returns : An object of class Series
Example 1 : Creating Series from a list
# import the library
import pandas as pd
  
# create the one-dimensional array
data = [1, 2, 3, 4, 5]
  
# create the Series
ex1 = pd.Series(data)
  
# displaying the Series
print(ex1)

                    
Output : Example 2 :Creating a Series from a NumPy array.
# import the pandas and numpy library
import pandas as pd
import numpy as np
  
# create numpy array
data = np.array(['a', 'b', 'c', 'd'])
  
# create one-dimensional data
s = pd.Series(data)
  
# display the Series
print(s)

                    
Output : Example 3: Creating a Series from a dictionary.
# import the pandas library
import pandas as pd
  
# create dictionary
dict = {'a' : 0.1, 'b' : 0.2, 'c' : 0.3}
  
# create one-dimensional data
s = pd.Series(dict)
  
# display the Series
print(s)

                    
Output : Example 4 :Creating a Series from list of lists.
# importing the module
import pandas as pd
  
# creating the data
data = [['g', 'e', 'e', 'k', 's'],
        ['f', 'o', 'r'],
        ['g', 'e', 'e', 'k', 's']]
  
# creating a Pandas series of lists
s = pd.Series(data)
  
# displaying the Series
print(s)

                    
Output :

Last Updated : 18 Aug, 2020
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads