In this program, we are trying to check whether the specified column in the given data frame starts with specified string or not. Let us try to understand this using an example suppose we have a dataset named student_id, date_of_joining, branch.
Example:
Python3
import pandas as pd
df = pd.DataFrame({
'Student_id' : [ 'TCS101' , 'TCS103' , 'PCS671' ,
'ECS881' , 'MCS961' ],
'date_of_joining' : [ '12/12/2016' , '07/12/2015' ,
'11/11/2011' , '09/12/2014' ,
'01/01/2017' ],
'Branch' : [ 'Computer Science' , 'Computer Science' ,
'Petroleum' , 'Electrical' , 'Mechanical' ]
})
df
|
Output:

Now we want to know whether student_id starts with TCS or not. Now let us try to implement this using Python
Python3
import pandas as pd
df = pd.DataFrame({
'Student_id' : [ 'TCS101' , 'TCS103' , 'PCS671' ,
'ECS881' , 'MCS961' ],
'date_of_joining' : [ '12/12/2016' , '07/12/2015' ,
'11/11/2011' , '09/12/2014' ,
'01/01/2017' ],
'Branch' : [ 'Computer Science' , 'Computer Science' ,
'Petroleum' , 'Electrical' , 'Mechanical' ]
})
df[ 'student_id_starts_with_TCS' ] = list (
map ( lambda x: x.startswith( 'TCS' ), df[ 'Student_id' ]))
df
|
Output:

In the above code, we used .startswith() function to check whether the values in the column starts with the given string. The .startswith() method in Python returns True if the string starts with the specified value, if not it returns False.
Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
01 Aug, 2020
Like Article
Save Article