Given a Pandas dataframe, we need to find the frequency counts of each item in one or more columns of this dataframe. This can be achieved in multiple ways:
Method #1: Using Series.value_counts()
This method is applicable to pandas.Series object. Since each DataFrame object is a collection of Series object, we can apply this method to get the frequency counts of values in one column.
import pandas as pd
df = pd.DataFrame({ 'A' : [ 'foo' , 'bar' , 'g2g' , 'g2g' , 'g2g' ,
'bar' , 'bar' , 'foo' , 'bar' ],
'B' : [ 'a' , 'b' , 'a' , 'b' , 'b' , 'b' , 'a' , 'a' , 'b' ] })
count = df[ 'A' ].value_counts()
print (count)
|
Output:

Method #2: Using GroupBy.count()
This method can be used to count frequencies of objects over single columns. After grouping a DataFrame object on one column, we can apply count()
method on the resulting groupby object to get a DataFrame object containing frequency count.
import pandas as pd
df = pd.DataFrame({ 'A' : [ 'foo' , 'bar' , 'g2g' , 'g2g' , 'g2g' ,
'bar' , 'bar' , 'foo' , 'bar' ],
'B' : [ 'a' , 'b' , 'a' , 'b' , 'b' , 'b' , 'a' , 'a' , 'b' ] })
count = df.groupby([ 'A' ]).count()
print (count)
|
Output:

Method #3: Using GroupBy.size()
This method can be used to count frequencies of objects over single or multiple columns. After grouping a DataFrame object on one or more columns, we can apply size()
method on the resulting groupby object to get a Series object containing frequency count.
import pandas as pd
df = pd.DataFrame({ 'A' : [ 'foo' , 'bar' , 'g2g' , 'g2g' , 'g2g' ,
'bar' , 'bar' , 'foo' , 'bar' ],
'B' : [ 'a' , 'b' , 'a' , 'b' , 'b' , 'b' , 'a' , 'a' , 'b' ] })
count = df.groupby([ 'A' , 'B' ]).size()
print (count)
|
Output:

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
28 Dec, 2018
Like Article
Save Article