Methods in Pandas like iloc[]
, iat[]
are generally used to select the data from a given dataframe. In this article, we will learn how to select the limited rows with given columns with the help of these methods.
Example 1: Select two columns
import pandas as pd
data = { 'Name' :[ 'Jai' , 'Princi' , 'Gaurav' , 'Anuj' ],
'Age' :[ 27 , 24 , 22 , 32 ],
'Address' :[ 'Delhi' , 'Kanpur' , 'Allahabad' , 'Kannauj' ],
'Qualification' :[ 'Msc' , 'MA' , 'MCA' , 'Phd' ]}
df = pd.DataFrame(data)
print (df.loc[ 1 : 3 , [ 'Name' , 'Qualification' ]])
|
Output:
Name Qualification
1 Princi MA
2 Gaurav MCA
3 Anuj Phd
Example 2: First filtering rows and selecting columns by label format and then Select all columns.
import pandas as pd
data = { 'Name' :[ 'Jai' , 'Princi' , 'Gaurav' , 'Anuj' ],
'Age' :[ 27 , 24 , 22 , 32 ],
'Address' :[ 'Delhi' , 'Kanpur' , 'Allahabad' , 'Kannauj' ],
'Qualification' :[ 'Msc' , 'MA' , 'MCA' , 'Phd' ]
}
df = pd.DataFrame(data)
print (df.loc[ 0 , :] )
|
Output:
Address Delhi
Age 27
Name Jai
Qualification Msc
Name: 0, dtype: object
Example 3: Select all or some columns, one to another using .iloc.
import pandas as pd
data = { 'Name' :[ 'Jai' , 'Princi' , 'Gaurav' , 'Anuj' ],
'Age' :[ 27 , 24 , 22 , 32 ],
'Address' :[ 'Delhi' , 'Kanpur' , 'Allahabad' , 'Kannauj' ],
'Qualification' :[ 'Msc' , 'MA' , 'MCA' , 'Phd' ]}
df = pd.DataFrame(data)
print (df.iloc [ 0 : 2 , 1 : 3 ] )
|
Output:
Age Name
0 27 Jai
1 24 Princi
Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
24 Oct, 2019
Like Article
Save Article