Skip to content
Related Articles

Related Articles

Improve Article

How to add one row in an existing Pandas DataFrame?

  • Last Updated : 28 Jul, 2020
Geek Week

In this article, we’ll see how to add a new row of values to an existing dataframe. This can be used when we want to insert a new entry in our data that we might have missed adding earlier. There are different methods to achieve this. Now let’s see with the help of examples how we can do this

Example 1:

We can add a single row using DataFrame.loc. We can add the row at the last in our dataframe. We can get the number of rows using len(DataFrame.index) for determining the position at which we need to add the new row.




from IPython.display import display, HTML
  
import pandas as pd
from numpy.random import randint
  
dict = {'Name':['Martha', 'Tim', 'Rob', 'Georgia'],
        'Maths':[87, 91, 97, 95],
        'Science':[83, 99, 84, 76]
       }
  
df = pd.DataFrame(dict)
  
display(df)
  
df.loc[len(df.index)] = ['Amy', 89, 93
  
display(df)

Output:

add-row-to-existing-pandas-dataframe



Example 2:

We can also add a new row using the DataFrame.append() function




from IPython.display import display, HTML
  
import pandas as pd
import numpy as np
  
dict = {'Name':['Martha', 'Tim', 'Rob', 'Georgia'],
        'Maths':[87, 91, 97, 95],
        'Science':[83, 99, 84, 76]
       }
  
df = pd.DataFrame(dict)
  
display(df)
  
df2 = {'Name': 'Amy', 'Maths': 89, 'Science': 93}
df = df.append(df2, ignore_index = True)
  
display(df)

Output:

add-row-to-existing-pandas-dataframe

Example 3:

We can also add multiple rows using the pandas.concat() by creating a new dataframe of all the rows that we need to add and then appending this dataframe to the original dataframe.




from IPython.display import display, HTML
  
import pandas as pd
import numpy as np
  
dict = {'Name':['Martha', 'Tim', 'Rob', 'Georgia'],
        'Maths':[87, 91, 97, 95],
        'Science':[83, 99, 84, 76]
       }
  
df1 = pd.DataFrame(dict)
display(df1)
  
dict = {'Name':['Amy', 'Maddy'],
        'Maths':[89, 90],
        'Science':[93, 81]
       }
  
df2 = pd.DataFrame(dict)
display(df2)
  
df3 = pd.concat([df1, df2], ignore_index = True)
df3.reset_index()
  
display(df3)

Output:

add-row-to-existing-pandas-dataframe

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :