Get all rows in a Pandas DataFrame containing given substring

Let’s see how to get all rows in a Pandas DataFrame containing given substring with the help of different examples.

Code #1: Check the values PG in column Position

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas 
import pandas as pd
  
# Creating the dataframe with dict of lists
df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'],
                   'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'],
                   'Position': ['PG', 'PG', 'UG', 'PG', 'UG'],
                   'Number': [3, 4, 7, 11, 5],
                   'Age': [33, 25, 34, 35, 28],
                   'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'],
                   'Weight': [89, 79, 113, 78, 84],
                   'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'],
                   'Salary': [99999, 99994, 89999, 78889, 87779]},
                   index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5'])
print(df, "\n")
  
print("Check PG values in Position column:\n")
df1 = df['Position'].str.contains("PG")
print(df1)

chevron_right


Output:

But this result doesn’t seem very helpful, as it returns the bool values with the index. Let’s see if we can do something better.
 

Code #2: Getting the rows satisfying condition



filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the dataframe with dict of lists
df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'],
                   'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'],
                   'Position': ['PG', 'PG', 'UG', 'PG', 'UG'],
                   'Number': [3, 4, 7, 11, 5],
                   'Age': [33, 25, 34, 35, 28],
                   'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'],
                   'Weight': [89, 79, 113, 78, 84],
                   'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'],
                   'Salary': [99999, 99994, 89999, 78889, 87779]},
                   index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5'])
  
df1 = df[df['Position'].str.contains("PG")]
print(df1)

chevron_right


Output:

 

Code #3: Filter all rows where either Team contains ‘Boston’ or College contains ‘MIT’.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas
import pandas as pd
  
# Creating the dataframe with dict of lists
df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'],
                   'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'],
                   'Position': ['PG', 'PG', 'UG', 'PG', 'UG'],
                   'Number': [3, 4, 7, 11, 5],
                   'Age': [33, 25, 34, 35, 28],
                   'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'],
                   'Weight': [89, 79, 113, 78, 84],
                   'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'],
                   'Salary': [99999, 99994, 89999, 78889, 87779]},
                   index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5'])
  
  
df1 = df[df['Team'].str.contains("Boston") | df['College'].str.contains('MIT')]
print(df1)

chevron_right


Output:

 
Code #4: Filter rows checking Team name contains ‘Boston and Position must be PG.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas module 
import pandas as pd 
    
# making data frame 
  
  
df1 = df[df['Team'].str.contains('Boston') & df['Position'].str.contains('PG')]
df1

chevron_right


Output:

 

Code #5: Filter rows checking Position contains PG and College must contains like UC.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas module 
import pandas as pd 
    
# making data frame 
  
  
df1 = df[df['Position'].str.contains("PG") & df['College'].str.contains('UC')]
df1

chevron_right


Output:

 

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.