Pandas Series is a one-dimensional labeled array capable of holding data of any type (integer, string, float, python objects, etc.). Labels need not be unique but must be a hashable type.
Let’s discuss different ways to access the elements of given Pandas Series.
First create a Pandas Series.
# importing pandas module import pandas as pd # making data frame ser = pd.Series(df[ 'Name' ]) ser.head( 10 ) # or simply df['Name'].head(10) |
Output:
Example #1: Get the first element of series
# importing pandas module import pandas as pd # making data frame df[ 'Name' ].head( 10 ) # get the first element ser[ 0 ] |
Output:
Example #2: Access multiple elements by providing position of item
# importing pandas module import pandas as pd # making data frame df[ 'Name' ].head( 10 ) # get multiple elements at given index ser[[ 0 , 3 , 6 , 9 ]] |
Output:
Example #3: Access first 5 elements in Series
# importing pandas module import pandas as pd # making data frame df[ 'Name' ].head( 10 ) # get first five names ser[: 5 ] |
Output:
Example #4: Get last 10 elements in Series
# importing pandas module import pandas as pd # making data frame df[ 'Name' ].head( 10 ) # get last 10 names ser[ - 10 :] |
Output:
Example #5: Access multiple elements by providing label of index
# importing pandas module import pandas as pd import numpy as np ser = pd.Series(np.arange( 3 , 15 ), index = list ( "abcdefghijkl" )) ser[[ 'a' , 'd' , 'g' , 'l' ]] |
Output:
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.