Pandas is famous for data manipulation in Python. We can create a DataFrame from a list of simple tuples, and can even choose the specific elements of the tuples we want to use.
Using pd.DataFrame() function
Here we will create a Pandas Dataframe using a list of tuples with the pd.DataFrame()
function.
Example 1: In this example, we will simply pass the tuple to the DataFrame constructor which will return a pandas dataframe.
Python3
import pandas as pd
data = [( 'Peter' , 18 , 7 ),
( 'Riff' , 15 , 6 ),
( 'John' , 17 , 8 ),
( 'Michel' , 18 , 7 ),
( 'Sheli' , 17 , 5 ) ]
df = pd.DataFrame(data, columns = [ 'Name' , 'Age' , 'Score' ])
print (df)
|
Output:
Name Age Score
0 Peter 18 7
1 Riff 15 6
2 John 17 8
3 Michel 18 7
4 Sheli 17 5
Using from_records()
Here we will create a Pandas Dataframe using a list of tuples using the from_records()
method.
Example 2: In this example, we will use the df.from_records() to create the dataframe from the list of tuples.
Python3
import pandas as pd
data = [( 'Peter' , 18 , 7 ),
( 'Riff' , 15 , 6 ),
( 'John' , 17 , 8 ),
( 'Michel' , 18 , 7 ),
( 'Sheli' , 17 , 5 ) ]
df = pd.DataFrame.from_records(data, columns = [ 'Team' , 'Age' , 'Score' ])
print (df)
|
Output:
Team Age Score
0 Peter 18 7
1 Riff 15 6
2 John 17 8
3 Michel 18 7
4 Sheli 17 5
Using df.pivot() function
Here we will create a Pandas Dataframe using a list of tuples using the df.pivot() function method.
Example 3: Creating pivot table by using three columns
Python3
import pandas as pd
data = [( 'Peter' , 18 , 7 ),
( 'Riff' , 15 , 6 ),
( 'John' , 17 , 8 ),
( 'Michel' , 18 , 7 ),
( 'Sheli' , 17 , 5 ) ]
df = pd.DataFrame(data, columns = [ 'Team' , 'Age' , 'Score' ])
a = df.pivot( 'Team' , 'Score' , 'Age' )
print (a)
|
Output:
Score 5 6 7 8
Team
John NaN NaN NaN 17.0
Michel NaN NaN 18.0 NaN
Peter NaN NaN 18.0 NaN
Riff NaN 15.0 NaN NaN
Sheli 17.0 NaN NaN NaN
Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
25 Aug, 2023
Like Article
Save Article