Open In App
Related Articles

How to randomly select rows from Pandas DataFrame

Improve Article
Improve
Save Article
Save
Like Article
Like

In this artcicle, we are going to see how to randomly select rows from Pandas Dataframe.

Let’s discuss how to randomly select rows from Pandas DataFrame. A random selection of rows from a DataFrame can be achieved in different ways. 
Create a simple dataframe with dictionary of lists. 
 

Python3




# Import pandas package
import pandas as pd
  
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj', 'Geeku'],
        'Age':[27, 24, 22, 32, 15],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj', 'Noida'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd', '10th']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
 
# select all columns
df


Output:

    Name    Age    Address    Qualification
0 Jai 27 Delhi Msc
1 Princi 24 Kanpur MA
2 Gaurav 22 Allahabad MCA
3 Anuj 32 Kannauj Phd
4 Geeku 15 Noida 10th

Select rows from Pandas DataFrame Using sample() method 

Sample method returns a random sample of items from an axis of object and this object of same type as your caller. 

Example 1: 

Python3




# Selects one row randomly using sample()
# without give any parameters.
 
# Import pandas package
import pandas as pd
  
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj', 'Geeku'],
        'Age':[27, 24, 22, 32, 15],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj', 'Noida'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd', '10th']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
 
# Select one row randomly using sample()
# without give any parameters
df.sample()


Output: 

Name    Age    Address    Qualification
1 Princi 24 Kanpur MA

Example 2: Using parameter n, which selects n numbers of rows randomly.

Select n numbers of rows randomly using sample(n) or sample(n=n). Each time you run this, you get n different rows. 

Python3




# To get 3 random rows
# each time it gives 3 different rows
 
# df.sample(3) or
df.sample(n = 3)


Output: 

    Name    Age    Address    Qualification
2 Gaurav 22 Allahabad MCA
4 Geeku 15 Noida 10th
3 Anuj 32 Kannauj Phd

Example 3: Using frac parameter.

One can do fraction of axis items and get rows. For example, if frac= .5 then sample method return 50% of rows.

Python3




# Fraction of rows
 
# here you get .50 % of the rows
df.sample(frac = 0.5)


Output: 

    Name    Age    Address    Qualification
1 Princi 24 Kanpur MA
0 Jai 27 Delhi Msc

Example 4: First selects 70% rows of whole df dataframe and put in another dataframe df1 after that we select 50% frac from df1

Python3




# fraction of rows
 
# here you get 70 % row from the df
# make put into another dataframe df1
df1 = df.sample(frac =.7)
 
# Now select 50 % rows from df1
df1.sample(frac =.50)


Output: 

    Name    Age    Address    Qualification
3 Anuj 32 Kannauj Phd
1 Princi 24 Kanpur MA

Example 5: Select some rows randomly with replace = false

Parameter replace give permission to select one rows many time(like). Default value of replace parameter of sample() method is False so you never select more than total number of rows.

Python3




# Dataframe df has only 4 rows
 
# if we try to select more than 4 row then will come error
# Cannot take a larger sample than population when 'replace = False'
df1.sample(n = 3, replace = False)


Output: 

Name    Age    Address    Qualification
2 Gaurav 22 Allahabad MCA
1 Princi 24 Kanpur MA
4 Geeku 15 Noida 10th

Example 6: Select more than n rows where n is total number of rows with the help of replace.

Python3




# Select more than rows with using replace
# default it is False
df1.sample(n = 6, replace = True)


Output: 

Name    Age    Address    Qualification
2 Gaurav 22 Allahabad MCA
2 Gaurav 22 Allahabad MCA
1 Princi 24 Kanpur MA
2 Gaurav 22 Allahabad MCA
4 Geeku 15 Noida 10th
1 Princi 24 Kanpur MA

Example 7: Using weights

Python3




# Weights will be re-normalized automatically
test_weights = [0.2, 0.2, 0.2, 0.4]
 
df1.sample(n = 3, weights = test_weights)


Output: 

Name    Age    Address    Qualification
2 Gaurav 22 Allahabad MCA
1 Princi 24 Kanpur MA
3 Anuj 32 Kannauj Phd

Example 8: Using axis

The axis accepts number or name. sample() method also allows users to sample columns instead of rows using the axis argument.

Python3




# Accepts axis number or name.
 
# sample also allows users to sample columns
# instead of rows using the axis argument.
df1.sample(axis = 0)


Output: 

Name    Age    Address    Qualification
3 Anuj 32 Kannauj Phd

Example 9: Using random_state With a given DataFrame, the sample will always fetch same rows. If random_state is None or np.random, then a randomly-initialized RandomState object is returned.

Python3




# With a given seed, the sample will always draw the same rows.
 
# If random_state is None or np.random,
# then a randomly-initialized
# RandomState object is returned.
df1.sample(n = 2, random_state = 2)


Output: 

    Name    Age    Address    Qualification
1 Princi 24 Kanpur MA
2 Gaurav 22 Allahabad MCA

Select rows from Pandas Using NumPy

Numpy choose how many index include for random selection and we can allow replacement.

Python3




# Import pandas & Numpy package
import numpy as np
import pandas as pd
  
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj', 'Geeku'],
        'Age':[27, 24, 22, 32, 15],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj', 'Noida'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd', '10th']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
 
# Choose how many index include for random selection
chosen_idx = np.random.choice(4, replace = True, size = 6)
 
df2 = df.iloc[chosen_idx]
 
df2


Output: 

Name    Age    Address    Qualification
3 Anuj 32 Kannauj Phd
1 Princi 24 Kanpur MA
1 Princi 24 Kanpur MA
0 Jai 27 Delhi Msc
3 Anuj 32 Kannauj Phd
0 Jai 27 Delhi Msc

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!

Last Updated : 29 Sep, 2023
Like Article
Save Article
Similar Reads
Related Tutorials