# Check whether the point (x, y) lies on a given line

Given the values of **m** and **c** for the equation of a line **y = (m * x) + c**, the task is to find whether the point **(x, y)** lies on the given line.

**Examples:**

Input:m = 3, c = 2, x = 1, y = 5

Output:Yes

m * x + c = 3 * 1 + 2 = 3 + 2 = 5 which is equal to y

Hence, the given point satisfies the line’s equation

Input:m = 5, c = 2, x = 2, y = 5

Output:No

**Approach:** In order for the given point to lie on the line, it must satisfy the equation of the line. Check whether **y = (m * x) + c** holds true.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function that return true if ` `// the given point lies on the given line ` `bool` `pointIsOnLine(` `int` `m, ` `int` `c, ` `int` `x, ` `int` `y) ` `{ ` ` ` `// If (x, y) satisfies the equation of the line ` ` ` `if` `(y == ((m * x) + c)) ` ` ` `return` `true` `; ` ` ` ` ` `return` `false` `; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `m = 3, c = 2; ` ` ` `int` `x = 1, y = 5; ` ` ` ` ` `if` `(pointIsOnLine(m, c, x, y)) ` ` ` `cout << ` `"Yes"` `; ` ` ` `else` ` ` `cout << ` `"No"` `; ` `} ` |

*chevron_right*

*filter_none*

## C#

`// C# implementation of the approach ` `using` `System; ` ` ` `class` `GFG ` `{ ` ` ` `// Function that return true if ` `// the given point lies on the given line ` `static` `bool` `pointIsOnLine(` `int` `m, ` `int` `c, ` ` ` `int` `x, ` `int` `y) ` `{ ` ` ` `// If (x, y) satisfies the equation ` ` ` `// of the line ` ` ` `if` `(y == ((m * x) + c)) ` ` ` `return` `true` `; ` ` ` ` ` `return` `false` `; ` `} ` ` ` `// Driver code ` `public` `static` `void` `Main() ` `{ ` ` ` `int` `m = 3, c = 2; ` ` ` `int` `x = 1, y = 5; ` ` ` ` ` `if` `(pointIsOnLine(m, c, x, y)) ` ` ` `Console.Write(` `"Yes"` `); ` ` ` `else` ` ` `Console.Write(` `"No"` `); ` `} ` `} ` ` ` `// This code is contributed by Akanksha Rai ` |

*chevron_right*

*filter_none*

## PHP

`<?php ` `// PHP implementation of the approach ` ` ` `// Function that return true if the ` `// given point lies on the given line ` `function` `pointIsOnLine(` `$m` `, ` `$c` `, ` `$x` `, ` `$y` `) ` `{ ` ` ` ` ` `// If (x, y) satisfies the equation ` ` ` `// of the line ` ` ` `if` `(` `$y` `== ((` `$m` `* ` `$x` `) + ` `$c` `)) ` ` ` `return` `true; ` ` ` ` ` `return` `false; ` `} ` ` ` `// Driver code ` `$m` `= 3; ` `$c` `= 2; ` `$x` `= 1; ` `$y` `= 5; ` ` ` `if` `(pointIsOnLine(` `$m` `, ` `$c` `, ` `$x` `, ` `$y` `)) ` ` ` `echo` `"Yes"` `; ` `else` ` ` `echo` `"No"` `; ` ` ` `// This code is contributed by Ryuga ` `?> ` |

*chevron_right*

*filter_none*

**Output:**

Yes

## Recommended Posts:

- Check if a point lies on or inside a rectangle | Set-2
- Check whether a given point lies inside a rectangle or not
- Check whether a given point lies inside a triangle or not
- Check whether a given point lies on or inside the rectangle | Set 3
- Check whether a point lies inside a sphere or not
- How to check if a given point lies inside or outside a polygon?
- Find a point that lies inside exactly K given squares
- Find if a point lies inside a Circle
- Find the other end point of a line with given one end and mid
- Reflection of a point about a line in C++
- Direction of a Point from a Line Segment
- Program to find the mid-point of a line
- Perpendicular distance between a point and a Line in 2 D
- Shortest distance between a Line and a Point in a 3-D plane
- Choose points from two ranges such that no point lies in both the ranges

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.