Reset Index in Pandas Dataframe

Let’s discuss how to reset index in Pandas DataFrame. Often We start with a huge dataframe in Pandas and after manipulating/filtering the dataframe, we end up with much smaller dataframe.

When we look at the smaller dataframe, it might still carry the row index of the original dataframe. If the original index are numbers, now we have indexes that are not continuous. Well, pandas has reset_index() function. So to reset the index to the default integer index beginning at 0, We can simply use the reset_index() function.

So let’s see the different ways we can reset the index of a DataFrame.



First see original DataFrame.

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import pandas package
import pandas as pd
    
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj', 'Geeku'],
        'Age':[27, 24, 22, 32, 15],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj', 'Noida'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd', '10th'] }
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data)
  
df

chevron_right


Output:

 
Example #1: Make Own Index Without Removing Default index.

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import pandas package
import pandas as pd
    
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj', 'Geeku'],
        'Age':[27, 24, 22, 32, 15],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj', 'Noida'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd', '10th'] }
  
index = {'a', 'b', 'c', 'd', 'e'}
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data, index)
  
# Make Own Index as index
# In this case default index is exist 
df.reset_index(inplace = True)
  
df

chevron_right


Output:

 
Example #2: Make Own Index and Removing Default index.

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import pandas package
import pandas as pd
    
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj', 'Geeku'],
        'Age':[27, 24, 22, 32, 15],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj', 'Noida'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd', '10th'] }
  
# Create own index
index = {'a', 'b', 'c', 'd', 'e'}
  
# Convert the dictionary into DataFrame 
# Make Own Index and Removing Default index
df = pd.DataFrame(data, index)
  
df

chevron_right


Output:

 
Example 3: Reset own index and make default index as index.

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import pandas package
import pandas as pd
    
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj', 'Geeku'],
        'Age':[27, 24, 22, 32, 15],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj', 'Noida'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd', '10th'] }
  
# Create own index
index = {'a', 'b', 'c', 'd', 'e'}
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data, index)
  
# remove own index with default index
df.reset_index(inplace = True, drop = True)
  
df

chevron_right


Output:

 
Example #4: Make a column of dataframe as index with remove default index.

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import pandas package
import pandas as pd
    
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj', 'Geeku'],
        'Age':[27, 24, 22, 32, 15],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj', 'Noida'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd', '10th'] }
  
# Create own index
index = {'a', 'b', 'c', 'd', 'e'}
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data, index)
  
# set index any column of our DF and
# remove default index
df.set_index(['Age'], inplace = True)
  
df

chevron_right


Output:

 
Example 5: Make a column of dataframe as index without remove default index.

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import pandas package
import pandas as pd
    
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj', 'Geeku'],
        'Age':[27, 24, 22, 32, 15],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj', 'Noida'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd', '10th'] }
  
# Create own index
index = {'a', 'b', 'c', 'd', 'e'}
  
# Convert the dictionary into DataFrame 
df = pd.DataFrame(data, index)
  
# set any column as index
# Here we set age column as index
df.set_index(['Age'], inplace = True)
  
# reset index without removing default index
df.reset_index(level =['Age'], inplace = True)
  
df

chevron_right


Output:



My Personal Notes arrow_drop_up

Strategy Path planning and Destination matters in success No need to worry about in between temporary failures

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.