Let’s discuss how to get unique values from a column in Pandas DataFrame.
Create a simple dataframe with dictionary of lists, say columns name are A, B, C, D, E with duplicate elements.

Now, let’s get the unique values of a column in this dataframe.
Example #1: Get the unique values of ‘B’ column
import pandas as pd
data = {
'A' :[ 'A1' , 'A2' , 'A3' , 'A4' , 'A5' ],
'B' :[ 'B1' , 'B2' , 'B3' , 'B4' , 'B4' ],
'C' :[ 'C1' , 'C2' , 'C3' , 'C3' , 'C3' ],
'D' :[ 'D1' , 'D2' , 'D2' , 'D2' , 'D2' ],
'E' :[ 'E1' , 'E1' , 'E1' , 'E1' , 'E1' ] }
df = pd.DataFrame(data)
df.B.unique()
|
Output:

Example #2: Get the unique values of ‘E’ column
import pandas as pd
data = {
'A' :[ 'A1' , 'A2' , 'A3' , 'A4' , 'A5' ],
'B' :[ 'B1' , 'B2' , 'B3' , 'B4' , 'B4' ],
'C' :[ 'C1' , 'C2' , 'C3' , 'C3' , 'C3' ],
'D' :[ 'D1' , 'D2' , 'D2' , 'D2' , 'D2' ],
'E' :[ 'E1' , 'E1' , 'E1' , 'E1' , 'E1' ] }
df = pd.DataFrame(data)
df.E.unique()
|
Output:

Example #3: Get number of unique values in a column
import pandas as pd
data = {
'A' :[ 'A1' , 'A2' , 'A3' , 'A4' , 'A5' ],
'B' :[ 'B1' , 'B2' , 'B3' , 'B4' , 'B4' ],
'C' :[ 'C1' , 'C2' , 'C3' , 'C3' , 'C3' ],
'D' :[ 'D1' , 'D2' , 'D2' , 'D2' , 'D2' ],
'E' :[ 'E1' , 'E1' , 'E1' , 'E1' , 'E1' ] }
df = pd.DataFrame(data)
df.C.nunique(dropna = True )
|
Output:
