Related Articles

Related Articles

Change Data Type for one or more columns in Pandas Dataframe
  • Last Updated : 26 Dec, 2018

Let’s see the different ways of changing Data Type for one or more columns in Pandas Dataframe.

Method #1: Using DataFrame.astype()

We can pass any Python, Numpy or Pandas datatype to change all columns of a dataframe to that type, or we can pass a dictionary having column names as keys and datatype as values to change type of selected columns.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# sample dataframe
df = pd.DataFrame({
    'A': [1, 2, 3, 4, 5],
    'B': ['a', 'b', 'c', 'd', 'e'],
    'C': [1.1, '1.0', '1.3', 2, 5] })
  
# converting all columns to string type
df = df.astype(str)
print(df.dtypes)

chevron_right


Output:

 

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# sample dataframe
df = pd.DataFrame({
    'A': [1, 2, 3, 4, 5],
    'B': ['a', 'b', 'c', 'd', 'e'],
    'C': [1.1, '1.0', '1.3', 2, 5] })
  
# using dictionary to convert specific columns
convert_dict = {'A': int,
                'C': float
               }
  
df = df.astype(convert_dict)
print(df.dtypes)

chevron_right


Output:

 
Method #2: Using DataFrame.apply()



We can pass pandas.to_numeric, pandas.to_datetime and pandas.to_timedelta as argument to apply() function to change the datatype of one or more columns to numeric, datetime and timedelta respectively.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# sample dataframe
df = pd.DataFrame({
    'A': [1, 2, 3, '4', '5'],
    'B': ['a', 'b', 'c', 'd', 'e'],
    'C': [1.1, '2.1', 3.0, '4.1', '5.1'] })
  
# using apply method
df[['A', 'C']] = df[['A', 'C']].apply(pd.to_numeric)
print(df.dtypes)

chevron_right


Output:

 
Method #3: Using DataFrame.infer_objects()
This method attempts soft-conversion by inferring data type of ‘object’-type columns. Non-object and unconvertible columns are left unchanged.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# sample dataframe
df = pd.DataFrame({
    'A': [1, 2, 3, 4, 5],
    'B': ['a', 'b', 'c', 'd', 'e'],
    'C': [1.1, 2.1, 3.0, 4.1, 5.1]
     }, dtype ='object')
  
# converting datatypes
df = df.infer_objects()
print(df.dtypes)

chevron_right


Output:

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :