Skip to content
Related Articles

Related Articles

Append list of dictionary and series to a existing Pandas DataFrame in Python
  • Last Updated : 26 Mar, 2021

In this article, we will discuss how values from a list of dictionaries or Pandas Series can be appended to an already existing pandas dataframe. For this purpose append() function of pandas, the module is sufficient.

Syntax: DataFrame.append(other, ignore_index=False, verify_integrity=False, sort=None)

Parameters :
other : DataFrame or Series/dict-like object, or list of these
ignore_index : If True, do not use the index labels.
verify_integrity : If True, raise ValueError on creating index with duplicates.
sort : Sort columns if the columns of self and other are not aligned. The default sorting is deprecated and will change to not-sorting in a future version of pandas. Explicitly pass sort=True to silence the warning and sort. Explicitly pass sort=False to silence the warning and not sort.

Returns: appended : DataFrame

Approach 

  • Import module
  • Create data frame or series
  • Create a list with dictionaries
  • Append this list to existing data frame or series

Example 1: 

Python




# import pandas
import pandas as pd
  
# create dataframe
df = pd.DataFrame({
    'Employs Name': ['Rishabh', 'Rahul', 'Suraj', 'Mukul', 'Vinit'],
    'Location': ['Saharanpur', 'Meerut', 'Saharanpur', 'Meerut', 'Saharanpur'],
    'Pay': [21000, 22000, 23000, 24000, 22000]})
  
# print dataframe
print("\n  ***  Original DataFrames  **  \n")
print(df)
  
  
# create dictioneries
dicts = [{'Employs Name': 'Anuj', 'Location': 'Meerut', 'Roll No': 30000},
         {'Employs Name': 'Arun', 'Location': 'Saharanpur', 'Roll No': 32000}]
  
# print dictioneries
print("\n  **  Dictionary  ** ")
print(dicts)
  
  
# combined data
df = df.append(dicts, ignore_index=True, sort=False)
  
# print combined dataframe
print("\n\n  **  Combined Data  **\n")
print(df)

Output:



Example 2: 

Python




# import pandas
import pandas as pd
  
# create dataframe
df = pd.DataFrame({
    'Name': ['Mukul', 'Rohit', 'Suraj', 'Rohan', 'Rajan'],
    'Course': ['BBA', 'BCA', 'MBA', 'BCA', 'BBA'],
    'Roll No': [21, 22, 23, 24, 25]})
  
# print dataframe
print("\n  ***  Original DataFrames  ** ")
display(df)
  
  
# create series
s6 = pd.Series(['Vedansh', 'MBA', 29], index=['Name', 'Course', 'Roll No'])
  
# print series
print("\n  ***  series  ** ")
print(s6)
  
# create dictioneries
dicts = [{'Name': 'Aakash', 'Course': 'BCA', 'Roll No': 30}]
  
# print dictioneries
print("\n  **  Dictionary  ** ")
print(dicts)
  
  
# combined data
df = df.append(dicts, ignore_index=True, sort=False)
print("\n  **  Combined Data  **")
display(df)

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :