Check if it is possible to draw a straight line with the given direction cosines

Given three direction cosines l, m and n of a 3-D plane, the task is to check if it is possible to draw a straight line with them or not. Print Yes if possible else print No.

Examples:

Input: l = 0.258, m = 0.80, n = 0.23
Output: No



Input: l = 0.70710678, m = 0.5, n = 0.5
Output: Yes

Approach: If a straight line forms angle a with positive X-axis, angle b with positive Y-axis and angle c with positive Z-axis then its direction cosines are cos(a), cos(b) and cos(c).
For a straight line, cos2(a) + cos2(b) + cos2(c) = 1.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function that returns true
// if a straight line is possible
bool isPossible(float x, float y, float z)
{
    float a = x * x + y * y + z * z;
    if (ceil(a) == 1 && floor(a) == 1)
        return true;
    return false;
}
  
// Driver code
int main()
{
    float l = 0.70710678, m = 0.5, n = 0.5;
  
    if (isPossible(l, m, n))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG
{
  
// Function that returns true
// if a straight line is possible
static boolean isPossible(float x, float y, float z)
{
    float a = x * x + y * y + z * z;
    if (Math.ceil(a) == 1 && Math.floor(a) == 1)
        return true;
    return false;
}
  
// Driver code
public static void main(String args[])
{
    float l = 0.70710678f, m = 0.5f, n = 0.5f;
  
    if (isPossible(l, m, n))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
  
// This code is contributed by
// Shashank_Sharma

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
from math import ceil, floor
  
# Function that returns true 
# if a straight line is possible 
def isPossible(x, y, z) :
  
    a = x * x + y * y + z * z
    a = round(a, 8)
      
    if (ceil(a) == 1 & floor(a) == 1) :
        return True
    return False
  
# Driver code 
if __name__ == "__main__" :
      
    l = 0.70710678
    m = 0.5
    n = 0.5
  
    if (isPossible(l, m, n)): 
        print("Yes"
    else :
        print("No")
  
# This code is contributed by Ryuga

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
  
// Function that returns true
// if a straight line is possible
static bool isPossible(float x, float y, float z)
{
    float a = x * x + y * y + z * z;
    if (Math.Ceiling(a) == 1 && Math.Floor(a) == 1)
        return true;
    return false;
}
  
// Driver code
public static void Main()
{
    float l = 0.70710678f, m = 0.5f, n = 0.5f;
    if (isPossible(l, m, n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
  
// This code is contributed by Ita_c.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
// Function that returns true
// if a straight line is possible
function isPossible($x, $y, $z)
{
    $a = round($x * $x + $y * $y + $z * $z);
    if (ceil($a) == 1 && floor($a) == 1)
        return true;
    return false;
}
  
// Driver code
$l = 0.70710678; $m = 0.5; $n = 0.5;
  
if (isPossible($l, $m, $n))
    echo("Yes");
else
    echo("No");
// This code is contributed by mukul singh. 

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.