Open In App
Related Articles

Represent a given set of points by the best possible straight line

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Find the value of m and c such that a straight line y = mx + c, best represents the equation of a given set of points (x_1    , y_1    ), (x_2    , y_2    ), (x_3    , y_3    ), ……., (x_n    , y_n    ), given n >=2.

Examples:  

Input : n = 5
        x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4, x_5 = 5y_1 = 14, y_2 = 27, y_3 = 40, y_4 = 55, y_5 = 68   Output : m = 13.6c = 0 If we take any pair of number ( x_i, y_i ) from the given data, these value of m and cshould make it best fit into the equation for a straight line, y = mx + c. Take x_1 = 1 and y_1 = 14, then using valuesof m and c from the output, and putting it in the following equation,y = mx + c,L.H.S.: y = 14, R.H.S: mx + c = 13.6 x 1 + 0 = 13.6So, they are approximately equal.Now, take x_3 = 3 and y_3 = 40,L.H.S.: y = 40, R.H.S: mx + c = 13.6 x 3 + 0 = 40.8So, they are also approximately equal, and so onfor all other values.Input : n = 6x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4, x_5 = 5, x_6 = 6y_1 = 1200, y_2 = 900, y_3 = 600, y_4 = 200, y_5 = 110, y_6 = 50Output : m = -243.42c = 1361.97

Approach

To best fit a set of points in an equation for a straight line, we need to find the value of two variables, m and c. Now, since there are 2 unknown variables and depending upon the value of n, two cases are possible – 

Case 1 – When n = 2 : There will be two equations and two unknown variables to find, so, there will be a unique solution . 
Case 2 – When n > 2 : In this case, there may or may not exist values of m and c, which satisfy all the n equations, but we can find the best possible values of m and c which can fit a straight line in the given points .

So, if we have n different pairs of x and y, then, we can form n no. of equations from them for a straight line, as follows 

f_1 = mx_1 + c,f_2 = mx_2 + c,f_3 = mx_3 + c,......................................,......................................,f_n = mx_n + c,where, f_i, is the value obtained by putting x_i in equation mx + c. 


Then, since ideally f_i    should be same as y_i    , but still we can find the f_i    closest to y_i    in all the cases, if we take a new quantity, U = ?(y_i    – f_i    )^2    , and make this quantity minimum for all value of i from 1 to n. 

Note:(y_i    – f_i    )^2    is used in place of (y_i    – f_i    ), as we want to consider both the cases when f_i    or when y_i    is greater, and we want their difference to be minimum, so if we would not square the term, then situations in which f_i
is greater and situation in which y_i    is greater will cancel each other to an extent, and this is not what we want. So, we need to square the term.

Now, for U to be minimum, it must satisfy the following two equations –

\frac{\partial U}{\partial m} = 0 and  \frac{\partial U}{\partial c} = 0. 

On solving the above two equations, we get two equations, as follows : 

?y = nc + m?x, and
?xy = c?x + m?x^2, which can be rearranged as - m = (n * ?xy - ?x?y) / (n * ?x^2 - (?x)^2), andc = (?y - m?x) / n, 

So, this is how values of m and c for both the cases are obtained, and we can represent a given set of points, by the best possible straight line. 

The following code implements the above given algorithm – 

C++

// C++ Program to find m and c for a straight line given,
// x and y
#include <cmath>
#include <iostream>
using namespace std;
 
// function to calculate m and c that best fit points
// represented by x[] and y[]
void bestApproximate(int x[], int y[], int n)
{
    float m, c, sum_x = 0, sum_y = 0, sum_xy = 0, sum_x2 = 0;
    for (int i = 0; i < n; i++) {
        sum_x += x[i];
        sum_y += y[i];
        sum_xy += x[i] * y[i];
        sum_x2 += pow(x[i], 2);
    }
 
    m = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - pow(sum_x, 2));
    c = (sum_y - m * sum_x) / n;
 
    cout << "m =" << m;
    cout << "\nc =" << c;
}
 
// Driver main function
int main()
{
    int x[] = { 1, 2, 3, 4, 5 };
    int y[] = { 14, 27, 40, 55, 68 };
    int n = sizeof(x) / sizeof(x[0]);
    bestApproximate(x, y, n);
    return 0;
}

                    

C

// C Program to find m and c for a straight line given,
// x and y
#include <stdio.h>
 
// function to calculate m and c that best fit points
// represented by x[] and y[]
void bestApproximate(int x[], int y[], int n)
{
    int i, j;
    float m, c, sum_x = 0, sum_y = 0, sum_xy = 0, sum_x2 = 0;
    for (i = 0; i < n; i++) {
        sum_x += x[i];
        sum_y += y[i];
        sum_xy += x[i] * y[i];
        sum_x2 += (x[i] * x[i]);
    }
 
    m = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - (sum_x * sum_x));
    c = (sum_y - m * sum_x) / n;
 
    printf("m =% f", m);
    printf("\nc =% f", c);
}
 
// Driver main function
int main()
{
    int x[] = { 1, 2, 3, 4, 5 };
    int y[] = { 14, 27, 40, 55, 68 };
    int n = sizeof(x) / sizeof(x[0]);
    bestApproximate(x, y, n);
    return 0;
}

                    

Java

// Java Program to find m and c for a straight line given,
// x and y
import java.io.*;
import static java.lang.Math.pow;
 
public class A {
    // function to calculate m and c that best fit points
    // represented by x[] and y[]
    static void bestApproximate(int x[], int y[])
    {
        int n = x.length;
        double m, c, sum_x = 0, sum_y = 0,
                     sum_xy = 0, sum_x2 = 0;
        for (int i = 0; i < n; i++) {
            sum_x += x[i];
            sum_y += y[i];
            sum_xy += x[i] * y[i];
            sum_x2 += pow(x[i], 2);
        }
 
        m = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - pow(sum_x, 2));
        c = (sum_y - m * sum_x) / n;
 
        System.out.println("m = " + m);
        System.out.println("c = " + c);
    }
 
    // Driver main function
    public static void main(String args[])
    {
        int x[] = { 1, 2, 3, 4, 5 };
        int y[] = { 14, 27, 40, 55, 68 };
        bestApproximate(x, y);
    }
}

                    

Python3

# python Program to find m and c for
# a straight line given, x and y
 
# function to calculate m and c that
# best fit points represented by x[]
# and y[]
def bestApproximate(x, y, n):
     
    sum_x = 0
    sum_y = 0
    sum_xy = 0
    sum_x2 = 0
     
    for i in range (0, n):
        sum_x += x[i]
        sum_y += y[i]
        sum_xy += x[i] * y[i]
        sum_x2 += pow(x[i], 2)
 
    m = (float)((n * sum_xy - sum_x * sum_y)
            / (n * sum_x2 - pow(sum_x, 2)));
             
    c = (float)(sum_y - m * sum_x) / n;
     
    print("m = ", m);
    print("c = ", c);
     
     
# Driver main function
x = [1, 2, 3, 4, 5 ]
y = [ 14, 27, 40, 55, 68]
n = len(x)
 
bestApproximate(x, y, n)
     
# This code is contributed by Sam007.

                    

C#

// C# Program to find m and c for a
// straight line given, x and y
using System;
 
class GFG {
 
    // function to calculate m and c that
    // best fit points represented by x[] and y[]
    static void bestApproximate(int[] x, int[] y)
    {
        int n = x.Length;
        double m, c, sum_x = 0, sum_y = 0,
                     sum_xy = 0, sum_x2 = 0;
 
        for (int i = 0; i < n; i++) {
            sum_x += x[i];
            sum_y += y[i];
            sum_xy += x[i] * y[i];
            sum_x2 += Math.Pow(x[i], 2);
        }
 
        m = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - Math.Pow(sum_x, 2));
 
        c = (sum_y - m * sum_x) / n;
 
        Console.WriteLine("m = " + m);
        Console.WriteLine("c = " + c);
    }
 
    // Driver main function
    public static void Main()
    {
        int[] x = { 1, 2, 3, 4, 5 };
        int[] y = { 14, 27, 40, 55, 68 };
 
        // Function calling
        bestApproximate(x, y);
    }
}
 
// This code is contributed by Sam007

                    

PHP

<?php
// PHP Program to find m and c
// for a straight line given,
// x and y
 
// function to calculate m and
// c that best fit points
// represented by x[] and y[]
function bestApproximate($x, $y, $n)
{
    $i; $j;
    $m; $c;
    $sum_x = 0;
    $sum_y = 0;
    $sum_xy = 0;
    $sum_x2 = 0;
    for ($i = 0; $i < $n; $i++)
    {
        $sum_x += $x[$i];
        $sum_y += $y[$i];
        $sum_xy += $x[$i] * $y[$i];
        $sum_x2 += ($x[$i] * $x[$i]);
    }
 
    $m = ($n * $sum_xy - $sum_x * $sum_y) /
         ($n * $sum_x2 - ($sum_x * $sum_x));
    $c = ($sum_y - $m * $sum_x) / $n;
 
    echo "m =", $m;
    echo "\nc =", $c;
}
 
    // Driver Code
    $x =array(1, 2, 3, 4, 5);
    $y =array (14, 27, 40, 55, 68);
    $n = sizeof($x);
    bestApproximate($x, $y, $n);
 
// This code is contributed by ajit
?>

                    

Javascript

<script>
 
// Javascript Program to find m and c
// for a straight line given, x and y
 
// function to calculate m and c that
// best fit points represented by x[] and y[]
function bestApproximate(x, y, n)
{
    let m, c, sum_x = 0, sum_y = 0,
             sum_xy = 0, sum_x2 = 0;
    for(let i = 0; i < n; i++)
    {
        sum_x += x[i];
        sum_y += y[i];
        sum_xy += x[i] * y[i];
        sum_x2 += Math.pow(x[i], 2);
    }
 
    m = (n * sum_xy - sum_x * sum_y) /
        (n * sum_x2 - Math.pow(sum_x, 2));
    c = (sum_y - m * sum_x) / n;
 
    document.write("m =" + m);
    document.write("<br>c =" + c);
}
 
// Driver code
let x = [ 1, 2, 3, 4, 5 ];
let y = [ 14, 27, 40, 55, 68 ];
let n = x.length;
 
bestApproximate(x, y, n);
 
// This code is contributed by subham348
 
</script>

                    

Output: 

m=13.6
c=0.0


Analysis of above code- 
Auxiliary Space : O(1) 
Time Complexity : O(n). We have one loop which iterates n times, and each time it performs constant no. of computations.

Reference- 
1-Higher Engineering Mathematics by B.S. Grewal.



 



Last Updated : 22 Nov, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads