Here we are going to rename multiple column headers using rename() method. The rename method is used to rename a single column as well as rename multiple columns at a time. And pass columns that contain the new values and inplace = true as an argument. We pass inplace = true because we just modify the working data frame if we pass inplace = false then it returns a new data frame.
Way 1: Using rename() method
- Import pandas.
- Create a data frame with multiple columns.
- Create a dictionary and set key = old name, value= new name of columns header.
- Assign the dictionary in columns.
- Call the rename method and pass columns that contain dictionary and inplace=true as an argument.
Example:
Python
import pandas as pd
df = pd.DataFrame({ 'First Name' : [ "Mukul" , "Rohan" , "Mayank" ,
"Vedansh" , "Krishna" ],
'Location' : [ "Saharanpur" , "Rampur" , "Agra" ,
"Saharanpur" , "Noida" ],
'Pay' : [ 56000.0 , 55000.0 , 61000.0 , 45000.0 , 62000.0 ]})
display(df)
dict = { 'First Name' : 'Name' ,
'Location' : 'City' ,
'Pay' : 'Salary' }
df.rename(columns = dict ,
inplace = True )
display(df)
|
Output:

Example 2:
In this example, we will rename the multiple times using the same approach.
Python3
import pandas as pd
df = pd.DataFrame({ 'First Name' : [ "Mukul" , "Rohan" , "Mayank" ,
"Vedansh" , "Krishna" ],
'Location' : [ "Saharanpur" , "Rampur" ,
"Agra" , "Saharanpur" , "Noida" ],
'Pay' : [ 56000.0 , 55000.0 , 61000.0 , 45000.0 , 62000.0 ]})
print ( "Original DataFrame" )
display(df)
dict = { 'First Name' : 'Name' ,
'Location' : 'City' ,
'Pay' : 'Salary' }
print ( "\nAfter rename" )
df.rename(columns = dict ,
inplace = True )
display(df)
dict = { 'Name' : 'Full Name' ,
'City' : 'Address' ,
'Salary' : 'Amount' }
df.rename(columns = dict ,
inplace = True )
display(df)
|
Output:
Way 2: Using index
One must follow the below steps as listed in sequential order prior to landing upon implementation part as follows:
- Import pandas.
- Create a data frame with multiple columns.
- The .column and .values property will return the array of columns.
- Change the values in the array of columns using slicing.
- Print the dataframe.
Example
Python3
import pandas as pd
df = pd.DataFrame({ 'First Name' : [ "Mukul" , "Rohan" , "Mayank" ,
"Vedansh" , "Krishna" ],
'Location' : [ "Saharanpur" , "Rampur" , "Agra" ,
"Saharanpur" , "Noida" ],
'Pay' : [ 56000.0 , 55000.0 , 61000.0 , 45000.0 , 62000.0 ]})
display(df)
df.columns.values[ 0 : 2 ] = [ "name" , "address" ]
display(df)
|
Output:
Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
25 May, 2022
Like Article
Save Article