# Computer Arithmetic | Set – 2

__FLOATING POINT ADDITION AND SUBTRACTION__

**FLOATING POINT ADDITION**

To understand floating point addition, first we see addition of real numbers in decimal as same logic is applied in both cases.

**For example, **we have to add **1.1 * 10 ^{3 }**and

**50.**

We cannot add these numbers directly. First, we need to align the exponent and then, we can add significant.

After aligning exponent, we get **50 = 0.05 * 10 ^{3}**

Now adding significant, **0.05 + 1.1 = 1.15**

So, finally we get **(1.1 * 10 ^{3 }+ 50) = 1.15 * 10^{3}**

Here, notice that we shifted **50** and made it **0.05** to add these numbers.

**Now let us take example of floating point number addition**

We follow these steps to add two numbers:

1. Align the significant

2. Add the significant

3. Normalize the result

**Let the two numbers be**

x = 9.75

y = 0.5625

Converting them into 32-bit floating point representation,

**9.75**’s representation in 32-bit format = **0 10000010 00111000000000000000000**

**0.5625**’s representation in 32-bit format = **0 01111110 00100000000000000000000**

Now we get the difference of exponents to know how much shifting is required.

(**10000010 – 01111110**)2 = (**4**)10

Now, we shift the mantissa of lesser number right side by 4 units.

Mantissa of **0.5625 = 1.00100000000000000000000**

(note that 1 before decimal point is understood in 32-bit representation)

Shifting right by **4** units, we get** 0.00010010000000000000000**

Mantissa of **9.75 **= **1. 00111000000000000000000**

Adding mantissa of both

**0. 00010010000000000000000**

**+ 1. 00111000000000000000000**

————————————————-

**1. 01001010000000000000000**

In final answer, we take exponent of bigger number

So, final answer consist of :

Sign bit = **0**

Exponent of bigger number = **10000010**

Mantissa = **01001010000000000000000**

32 bit representation of answer = **x + y** = **0 10000010 01001010000000000000000**

**FLOATING POINT SUBTRACTION**

Subtraction is similar to addition with some differences like we subtract mantissa unlike addition and in sign bit we put the sign of greater number.

**Let the two numbers be**

x = 9.75

y = – 0.5625

Converting them into 32-bit floating point representation

**9.75**’s representation in 32-bit format = **0 10000010 00111000000000000000000**

**– 0.5625**’s representation in 32-bit format = **1 01111110 00100000000000000000000**

Now, we find the difference of exponents to know how much shifting is required.

(**10000010 – 01111110**)2 = (**4**)10

Now, we shift the mantissa of lesser number right side by 4 units.

Mantissa of **–** **0.5625 = 1.00100000000000000000000**

(note that 1 before decimal point is understood in 32-bit representation)

Shifting right by **4** units,** 0.00010010000000000000000**

Mantissa of **9.75**= **1. 00111000000000000000000**

Subtracting mantissa of both

**0. 00010010000000000000000**

**– 1. 00111000000000000000000**

————————————————

**1. 00100110000000000000000**

Sign bit of bigger number =** 0**

So, finally the answer = **x – y = 0 10000010 00100110000000000000000**

This article has been contributed by Anuj Batham.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above