Number of horizontal or vertical line segments to connect 3 points

Given three points on the x-y coordinate plane. You need to find the no. of line segments formed by making a polyline passing through these points. (Line segment can be vertically or horizontally aligned to the coordinate axis)

Examples :

Input : A  = {-1, -1}, B = {-1, 3}, C = {4, 3}
Output :   2
Expantaion:
There are two segments in this polyline.       
Input :A = {1, 1}, B = {2, 3} C = {3, 2}
Output : 3

The result is one if all points are on x axis or y axis. The result is 2 if points can form L shape. L shape is formed if any of the three points can be used as a joining point. Otherwise answer is 3.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find number of horizontal (or vertical
// line segments needed to connect three points.
#include <iostream>
using namespace std;
  
// Function to check if the third point forms a 
// rectangle with other two points at corners
bool isBetween(int a, int b, int c) 
{
    return min(a, b) <= c && c <= max(a, b);
}
  
// Returns true if point k can be used as a joining
// point to connect using two line segments
bool canJoin(int x[], int y[], int i, int j, int k) 
{
    // Check for the valid polyline with two segments
    return (x[k] == x[i] || x[k] == x[j]) && 
                isBetween(y[i], y[j], y[k]) ||
        (y[k] == y[i] || y[k] == y[j]) && 
                isBetween(x[i], x[j], x[k]);
}
  
int countLineSegments(int x[], int y[])
{
    // Check whether the X-coordinates or 
    // Y-cocordinates are same. 
    if ((x[0] == x[1] && x[1] == x[2]) ||
        (y[0] == y[1] && y[1] == y[2]))
        return 1;
  
    // Iterate over all pairs to check for two
    // line segments
    else if (canJoin(x, y, 0, 1, 2) ||
            canJoin(x, y, 0, 2, 1) || 
            canJoin(x, y, 1, 2, 0))
        return 2;
  
    // Otherwise answer is three.
    else
        return 3;
}
  
// Driver code
int main()
{
    int x[3], y[3];
    x[0] = -1; y[0] = -1;
    x[1] = -1; y[1] = 3;
    x[2] = 4; y[2] = 3;
    cout << countLineSegments(x, y);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find number of horizontal
// (or vertical line segments needed to
// connect three points.
import java.io.*;
  
class GFG {
      
// Function to check if the third
// point forms a rectangle with 
// other two points at corners
static boolean isBetween(int a, int b, int c) 
{
    return (Math.min(a, b) <= c &&
                    c <= Math.max(a, b));
}
  
// Returns true if point k can be 
// used as a joining point to connect
// using two line segments
static boolean canJoin(int x[], int y[],
                        int i, int j, int k) 
{
    // Check for the valid polyline 
    // with two segments
    return (x[k] == x[i] || x[k] == x[j]) && 
                isBetween(y[i], y[j], y[k]) ||
                (y[k] == y[i] || y[k] == y[j]) && 
                isBetween(x[i], x[j], x[k]);
}
  
static int countLineSegments(int x[], int y[])
{
    // Check whether the X-coordinates or 
    // Y-cocordinates are same. 
    if ((x[0] == x[1] && x[1] == x[2]) ||
        (y[0] == y[1] && y[1] == y[2]))
        return 1;
  
    // Iterate over all pairs to check for two
    // line segments
    else if (canJoin(x, y, 0, 1, 2) ||
            canJoin(x, y, 0, 2, 1) || 
            canJoin(x, y, 1, 2, 0))
        return 2;
  
    // Otherwise answer is three.
    else
        return 3;
}
  
// Driver code
public static void main (String[] args) {
  
    int x[]=new int[3], y[]=new int[3];
      
    x[0] = -1; y[0] = -1;
    x[1] = -1; y[1] = 3;
    x[2] = 4; y[2] = 3;
      
    System.out.println(countLineSegments(x, y));
    }
      
      
}
  
// This code is contributed by vt_m

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find number
# of horizontal (or vertical
# line segments needed to
# connect three points.
  
import math
  
# Function to check if the
# third point forms a 
# rectangle with other
# two points at corners
def isBetween(a, b, c) :
  
    return min(a, b) <= c and c <= max(a, b)
  
   
# Returns true if point k
# can be used as a joining
# point to connect using
# two line segments
def canJoin( x, y, i, j, k) :
  
    # Check for the valid polyline
    # with two segments
    return (x[k] == x[i] or x[k] == x[j]) and isBetween(y[i], y[j], y[k]) or (y[k] == y[i] or y[k] == y[j]) and isBetween(x[i], x[j], x[k])
  
   
def countLineSegments( x, y):
  
    # Check whether the X-coordinates or 
    # Y-cocordinates are same. 
    if ((x[0] == x[1] and x[1] == x[2]) or
        (y[0] == y[1] and y[1] == y[2])):
        return 1
   
    # Iterate over all pairs to check for two
    # line segments
    elif (canJoin(x, y, 0, 1, 2) or
            canJoin(x, y, 0, 2, 1) or 
            canJoin(x, y, 1, 2, 0)):
        return 2
   
    # Otherwise answer is three.
    else:
        return 3
#driver code
x= [-1,-1, 4]
y= [-1, 3, 3]
  
print(countLineSegments(x, y))
  
# This code is contributed by Gitanjali.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find number of horizontal
// (or vertical) line segments needed to
// connect three points.
using System;
  
class GFG {
  
    // Function to check if the third
    // point forms a rectangle with
    // other two points at corners
    static bool isBetween(int a, int b, int c)
    {
        return (Math.Min(a, b) <= c && 
                          c <= Math.Max(a, b));
    }
  
    // Returns true if point k can be
    // used as a joining point to connect
    // using two line segments
    static bool canJoin(int[] x, int[] y,
                        int i, int j, int k)
    {
          
        // Check for the valid polyline
        // with two segments
        return (x[k] == x[i] || x[k] == x[j]) 
               && isBetween(y[i], y[j], y[k]) 
               || (y[k] == y[i] || y[k] == y[j]) 
               && isBetween(x[i], x[j], x[k]);
    }
  
    static int countLineSegments(int[] x, int[] y)
    {
          
        // Check whether the X-coordinates or
        // Y-cocordinates are same.
        if ((x[0] == x[1] && x[1] == x[2]) ||
                  (y[0] == y[1] && y[1] == y[2]))
            return 1;
  
        // Iterate over all pairs to check for two
        // line segments
        else if (canJoin(x, y, 0, 1, 2) 
                      || canJoin(x, y, 0, 2, 1) 
                      || canJoin(x, y, 1, 2, 0))
            return 2;
  
        // Otherwise answer is three.
        else
            return 3;
    }
  
    // Driver code
    public static void Main()
    {
  
        int[] x = new int[3];
        int[] y = new int[3];
  
        x[0] = -1;
        y[0] = -1;
        x[1] = -1;
        y[1] = 3;
        x[2] = 4;
        y[2] = 3;
  
        Console.WriteLine(countLineSegments(x, y));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find number 
// of horizontal (or vertical
// line segments needed to 
// connect three points.
  
  
// Function to check if the 
// third point forms a 
// rectangle with other
// two points at corners
function isBetween( $a, $b, $c
{
    return min($a, $b) <= $c and 
                    $c <= max($a, $b);
}
  
// Returns true if point k 
// can be used as a joining
// point to connect using
// two line segments
function canJoin($x, $y, $i, $j, $k
{
    // Check for the valid 
    // polyline with two segments
    return ($x[$k] == $x[$i] or 
            $x[$k] == $x[$j]) and
              isBetween($y[$i], $y[$j], $y[$k]) or
                              ($y[$k] == $y[$i] or 
                              $y[$k] == $y[$j]) and
                 isBetween($x[$i], $x[$j], $x[$k]);
}
  
function countLineSegments( $x, $y)
{
    // Check whether the X-coordinates  
    // or Y-cocordinates are same. 
    if (($x[0] == $x[1] and $x[1] == $x[2]) or
        ($y[0] == $y[1] and $y[1] == $y[2]))
        return 1;
  
    // Iterate over all pairs to 
    // check for two line segments
    else if (canJoin($x, $y, 0, 1, 2) or
              canJoin($x, $y, 0, 2, 1) || 
             canJoin($x, $y, 1, 2, 0))
        return 2;
  
    // Otherwise answer is three.
    else
        return 3;
}
  
// Driver code
$x = array(); 
$y = array();
$x[0] = -1; $y[0] = -1;
$x[1] = -1; $y[1] = 3;
$x[2] = 4; $y[2] = 3;
echo countLineSegments($x, $y);
  
// This code is contributed by anuj_67.
?>

chevron_right


Output :

  2


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m