In boolean indexing, we will select subsets of data based on the actual values of the data in the DataFrame and not on their row/column labels or integer locations. In boolean indexing, we use a boolean vector to filter the data.

Boolean indexing is a type of indexing that uses actual values of the data in the DataFrame. In boolean indexing, we can filter a data in four ways:
- Accessing a DataFrame with a boolean index
- Applying a boolean mask to a dataframe
- Masking data based on column value
- Masking data based on an index value
Accessing a DataFrame with a boolean index:
In order to access a dataframe with a boolean index, we have to create a dataframe in which the index of dataframe contains a boolean value that is “True” or “False”.
Example
Python3
import pandas as pd
dict = { 'name' :[ "aparna" , "pankaj" , "sudhir" , "Geeku" ],
'degree' : [ "MBA" , "BCA" , "M.Tech" , "MBA" ],
'score' :[ 90 , 40 , 80 , 98 ]}
df = pd.DataFrame( dict , index = [ True , False , True , False ])
print (df)
|
Output:

Now we have created a dataframe with the boolean index after that user can access a dataframe with the help of the boolean index. User can access a dataframe using three functions that is .loc[], .iloc[], .ix[]
Accessing a Dataframe with a boolean index using .loc[]
In order to access a dataframe with a boolean index using .loc[], we simply pass a boolean value (True or False) in a .loc[] function.
Python3
import pandas as pd
dict = { 'name' :[ "aparna" , "pankaj" , "sudhir" , "Geeku" ],
'degree' : [ "MBA" , "BCA" , "M.Tech" , "MBA" ],
'score' :[ 90 , 40 , 80 , 98 ]}
df = pd.DataFrame( dict , index = [ True , False , True , False ])
print (df.loc[ True ])
|
Output:

Accessing a Dataframe with a boolean index using .iloc[]
In order to access a dataframe using .iloc[], we have to pass a boolean value (True or False) but iloc[] function accepts only integer as an argument so it will throw an error so we can only access a dataframe when we pass an integer in iloc[] function
Code #1:
Python3
import pandas as pd
dict = { 'name' :[ "aparna" , "pankaj" , "sudhir" , "Geeku" ],
'degree' : [ "MBA" , "BCA" , "M.Tech" , "MBA" ],
'score' :[ 90 , 40 , 80 , 98 ]}
df = pd.DataFrame( dict , index = [ True , False , True , False ])
print (df.iloc[ True ])
|
Output:
TypeError
Code #2:
Python3
import pandas as pd
dict = { 'name' :[ "aparna" , "pankaj" , "sudhir" , "Geeku" ],
'degree' : [ "MBA" , "BCA" , "M.Tech" , "MBA" ],
'score' :[ 90 , 40 , 80 , 98 ]}
df = pd.DataFrame( dict , index = [ True , False , True , False ])
print (df.iloc[ 1 ])
|
Output:
Accessing a Dataframe with a boolean index using .ix[]
In order to access a dataframe using .ix[], we have to pass boolean value (True or False) and integer value to .ix[] function because as we know that .ix[] function is a hybrid of .loc[] and .iloc[] function.
Code #1:
Python3
import pandas as pd
dict = { 'name' :[ "aparna" , "pankaj" , "sudhir" , "Geeku" ],
'degree' : [ "MBA" , "BCA" , "M.Tech" , "MBA" ],
'score' :[ 90 , 40 , 80 , 98 ]}
df = pd.DataFrame( dict , index = [ True , False , True , False ])
print (df.ix[ True ])
|
Output:

Code #2:
Python
import pandas as pd
dict = { 'name' :[ "aparna" , "pankaj" , "sudhir" , "Geeku" ],
'degree' : [ "MBA" , "BCA" , "M.Tech" , "MBA" ],
'score' :[ 90 , 40 , 80 , 98 ]}
df = pd.DataFrame( dict , index = [ True , False , True , False ])
print (df.ix[ 1 ])
|
Output:

Applying a boolean mask to a dataframe :
In a dataframe, we can apply a boolean mask. In order to do that we can use __getitems__ or [] accessor. We can apply a boolean mask by giving a list of True and False of the same length as contain in a dataframe. When we apply a boolean mask it will print only that dataframe in which we pass a boolean value True. To download “nba1.1” CSV file click here.
Code #1:
Python3
import pandas as pd
dict = { 'name' :[ "aparna" , "pankaj" , "sudhir" , "Geeku" ],
'degree' : [ "MBA" , "BCA" , "M.Tech" , "MBA" ],
'score' :[ 90 , 40 , 80 , 98 ]}
df = pd.DataFrame( dict , index = [ 0 , 1 , 2 , 3 ])
print (df[[ True , False , True , False ]])
|
Output:

Code #2:
Python3
import pandas as pd
data = pd.read_csv( "nba1.1.csv" )
df = pd.DataFrame(data, index = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ,
7 , 8 , 9 , 10 , 11 , 12 ])
print (df[[ True , False , True , False , True ,
False , True , False , True , False ,
True , False , True ]])
|
Output:

Masking data based on column value:
In a dataframe we can filter a data based on a column value. In order to filter data, we can apply certain conditions on the dataframe using different operators like ==, >, <, <=, >=. When we apply these operators to the dataframe then it produces a Series of True and False. To download the “nba.csv” CSV, click here.
Code #1:
Python
import pandas as pd
dict = { 'name' :[ "aparna" , "pankaj" , "sudhir" , "Geeku" ],
'degree' : [ "BCA" , "BCA" , "M.Tech" , "BCA" ],
'score' :[ 90 , 40 , 80 , 98 ]}
df = pd.DataFrame( dict )
print (df[ 'degree' ] = = 'BCA' )
|
Output:

Code #2:
Python
import pandas as pd
data = pd.read_csv( "nba.csv" , index_col = "Name" )
print (data[ 'Age' ] > 25 )
|
Output:

Masking data based on index value :
In a dataframe we can filter a data based on a column value. In order to filter data, we can create a mask based on the index values using different operators like ==, >, <, etc… . To download “nba1.1” CSV file click here.
Code #1:
Python3
import pandas as pd
dict = { 'name' :[ "aparna" , "pankaj" , "sudhir" , "Geeku" ],
'degree' : [ "BCA" , "BCA" , "M.Tech" , "BCA" ],
'score' :[ 90 , 40 , 80 , 98 ]}
df = pd.DataFrame( dict , index = [ 0 , 1 , 2 , 3 ])
mask = df.index = = 0
print (df[mask])
|
Output:

Code #2:
Python3
import pandas as pd
data = pd.read_csv( "nba1.1.csv" )
df = pd.DataFrame(data, index = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ,
7 , 8 , 9 , 10 , 11 , 12 ])
mask = df.index > 7
print (df[mask])
|
Output:

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
08 Jun, 2022
Like Article
Save Article