Python | Pandas Index.value_counts()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas Index.value_counts() function returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Syntax: Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Parameters :
normalize : If True then the object returned will contain the relative frequencies of the unique values.
sort : Sort by values
ascending : Sort in ascending order
bins : Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data
dropna : Donâ€™t include counts of NaN.
Returns : counts : Series

Example #1: Use Index.value_counts() function to count the number of unique values in the given Index.

Python3

 `# importing pandas as pd` `import` `pandas as pd`   `# Creating the index` `idx ``=` `pd.Index([``'Harry'``, ``'Mike'``, ``'Arther'``, ``'Nick'``,` `                ``'Harry'``, ``'Arther'``], name ``=``'Student'``)`   `# Print the Index` `print``(idx)`

Output :

`Index(['Harry', 'Mike', 'Arther', 'Nick', 'Harry', 'Arther'], dtype='object', name='Student')`

Let’s find the count of all unique values in the index.

Python3

 `# find the count of unique values in the index` `idx.value_counts()`

Output :

```Harry     2
Arther    2
Nick      1
Mike      1
Name: Student, dtype: int64```

The function has returned the count of all unique values in the given index. Notice the object returned by the function contains the occurrence of the values in descending order.

Example #2: Use Index.value_counts() function to find the count of all unique values in the given index.

Python3

 `# importing pandas as pd` `import` `pandas as pd`   `# Creating the index` `idx ``=` `pd.Index([``21``, ``10``, ``30``, ``40``, ``50``, ``10``, ``50``])`   `# Print the Index` `print``(idx)`

Output :

`Int64Index([21, 10, 30, 40, 50, 10, 50], dtype='int64')`

Let’s count the occurrence of all the unique values in the Index.

Python3

 `# for finding the count of all ` `# unique values in the index.` `idx.value_counts()`

Output :

```10    2
50    2
30    1
21    1
40    1
dtype: int64```

The function has returned the count of all unique values in the index.

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!

Previous
Next