Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas DataFrame.ix[ ]
is both Label and Integer based slicing technique. Besides pure label based and integer based, Pandas provides a hybrid method for selections and subsetting the object using the ix[]
operator. ix[]
is the most general indexer and will support any of the inputs in loc[]
and iloc[]
.
Syntax: DataFrame.ix[ ]
Parameters:
Index Position: Index position of rows in integer or list of integer.
Index label: String or list of string of index label of rows
Returns: Data frame or Series depending on parameters
Code #1:import pandas as geek
print ( "Slicing only rows(till index 4):" )
x1 = data.ix[: 4 , ]
print (x1, "\n" )
print ( "Slicing rows and columns(rows=4, col 1-4, excluding 4):" )
x2 = data.ix[: 4 , 1 : 4 ]
print (x2)
|
Output :


Code #2:
import pandas as geek
data = geek.read_csv( "nba.csv" )
print ( "After index slicing:" )
x1 = data.ix[ 10 : 20 , 'Height' ]
print (x1, "\n" )
x2 = data.ix[ 10 : 20 , 'Salary' ]
print (x2)
|
Output:


Code #3:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn( 10 , 4 ),
columns = [ 'A' , 'B' , 'C' , 'D' ])
print ( "Original DataFrame: \n" , df)
print ( "\n Slicing only rows:" )
print ( "--------------------------" )
x1 = df.ix[: 4 , ]
print (x1)
print ( "\n Slicing rows and columns:" )
print ( "----------------------------" )
x2 = df.ix[: 4 , 1 : 3 ]
print (x2)
|
Output :

Code #4:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn( 10 , 4 ),
columns = [ 'A' , 'B' , 'C' , 'D' ])
print ( "Original DataFrame: \n" , df)
print ( "\n After index slicing (On 'A'):" )
print ( "--------------------------" )
x = df.ix[:, 'A' ]
print (x)
|
Output :
