Open In App
Related Articles

How to add one row in an existing Pandas DataFrame?

Improve Article
Improve
Save Article
Save
Like Article
Like

In this article, we’ll see how to add a new row of values to an existing dataframe. This can be used when we want to insert a new entry in our data that we might have missed adding earlier. There are different methods to achieve this.

Now let’s see with the help of examples how we can do this

Example 1:

We can add a single row using DataFrame.loc. We can add the row at the last in our dataframe. We can get the number of rows using len(DataFrame.index) for determining the position at which we need to add the new row.

Python3



from IPython.display import display, HTML

import pandas as pd
from numpy.random import randint

dict = {'Name':['Martha', 'Tim', 'Rob', 'Georgia'],
        'Maths':[87, 91, 97, 95],
        'Science':[83, 99, 84, 76]
       }

df = pd.DataFrame(dict)

display(df)

df.loc[len(df.index)] = ['Amy', 89, 93] 

display(df)

Output:

add-row-to-existing-pandas-dataframe

Example 2:

We can also add a new row using the DataFrame.append() function

Python3



from IPython.display import display, HTML

import pandas as pd
import numpy as np

dict = {'Name':['Martha', 'Tim', 'Rob', 'Georgia'],
        'Maths':[87, 91, 97, 95],
        'Science':[83, 99, 84, 76]
       }

df = pd.DataFrame(dict)

display(df)

df2 = {'Name': 'Amy', 'Maths': 89, 'Science': 93}
df = df.append(df2, ignore_index = True)

display(df)

Output:

add-row-to-existing-pandas-dataframe

Example 3:

We can also add multiple rows using the pandas.concat() by creating a new dataframe of all the rows that we need to add and then appending this dataframe to the original dataframe.

Python3



from IPython.display import display, HTML

import pandas as pd
import numpy as np

dict = {'Name':['Martha', 'Tim', 'Rob', 'Georgia'],
        'Maths':[87, 91, 97, 95],
        'Science':[83, 99, 84, 76]
       }

df1 = pd.DataFrame(dict)
display(df1)

dict = {'Name':['Amy', 'Maddy'],
        'Maths':[89, 90],
        'Science':[93, 81]
       }

df2 = pd.DataFrame(dict)
display(df2)

df3 = pd.concat([df1, df2], ignore_index = True)
df3.reset_index()

display(df3)

Output:

add-row-to-existing-pandas-dataframe

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!

Last Updated : 29 Sep, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials
Article Contributed By :
Vote for difficulty
Improved By :
Practice Tags :
Report Issue