Skip to content
Related Articles

Related Articles

Different ways to iterate over rows in Pandas Dataframe

View Discussion
Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 24 Jun, 2022
View Discussion
Improve Article
Save Article

In this article, we will cover how to iterate over rows in a DataFrame in Pandas.

How to iterate over rows in a DataFrame in Pandas

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier. 

Let’s see the Different ways to iterate over rows in Pandas Dataframe :

Method 1: Using the index attribute of the Dataframe. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit',
                 'Aishwarya', 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce',
                   'Arts', 'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age'
                                 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using index attribute :\n")
  
# iterate through each row and select
# 'Name' and 'Stream' column respectively.
for ind in df.index:
    print(df['Name'][ind], df['Stream'][ind])

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using index attribute :

Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology

  Method 2: Using loc[] function of the Dataframe. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit',
                 'Aishwarya', 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce',
                   'Arts', 'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age',
                                 'Stream'
                                 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using loc function :\n")
  
# iterate through each row and select
# 'Name' and 'Age' column respectively.
for i in range(len(df)):
    print(df.loc[i, "Name"], df.loc[i, "Age"])

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using loc function :

Ankit 21
Amit 19
Aishwarya 20
Priyanka 18

  Method 3: Using iloc[] function of the DataFrame. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit'
                 'Aishwarya', 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce'
                   'Arts', 'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age',
                                 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using iloc function :\n")
  
# iterate through each row and select
# 0th and 2nd index column respectively.
for i in range(len(df)):
    print(df.iloc[i, 0], df.iloc[i, 2])

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using iloc function :

Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology
​

 Method 4: Using iterrows() method of the Dataframe. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit'
                 'Aishwarya', 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce',
                   'Arts', 'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age'
                                 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using iterrows() method :\n")
  
# iterate through each row and select
# 'Name' and 'Age' column respectively.
for index, row in df.iterrows():
    print(row["Name"], row["Age"])

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using iterrows() method :

Ankit 21
Amit 19
Aishwarya 20
Priyanka 18

  Method 5: Using itertuples() method of the Dataframe. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit', 'Aishwarya',
                 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce', 'Arts'
                   'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age'
                                 'Stream',
                                 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using itertuples() method :\n")
  
# iterate through each row and select
# 'Name' and 'Percentage' column respectively.
for row in df.itertuples(index=True, name='Pandas'):
    print(getattr(row, "Name"), getattr(row, "Percentage"))

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using itertuples() method :

Ankit 88
Amit 92
Aishwarya 95
Priyanka 70
​

  Method 6: Using apply() method of the Dataframe. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit', 'Aishwarya',
                 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce', 'Arts',
                   'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream',
                                 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using apply function :\n")
  
# iterate through each row and concatenate
# 'Name' and 'Percentage' column respectively.
print(df.apply(lambda row: row["Name"] + " " + 
               str(row["Percentage"]), axis=1))

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using apply function :

0        Ankit 88
1         Amit 92
2    Aishwarya 95
3     Priyanka 70
dtype: object

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!