Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Different ways to iterate over rows in Pandas Dataframe

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

In this article, we will cover how to iterate over rows in a DataFrame in Pandas.

How to iterate over rows in a DataFrame in Pandas

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier. 

Let’s see the Different ways to iterate over rows in Pandas Dataframe :

Method 1: Using the index attribute of the Dataframe. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit',
                 'Aishwarya', 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce',
                   'Arts', 'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age'
                                 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using index attribute :\n")
  
# iterate through each row and select
# 'Name' and 'Stream' column respectively.
for ind in df.index:
    print(df['Name'][ind], df['Stream'][ind])

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using index attribute :

Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology

  Method 2: Using loc[] function of the Dataframe. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit',
                 'Aishwarya', 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce',
                   'Arts', 'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age',
                                 'Stream'
                                 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using loc function :\n")
  
# iterate through each row and select
# 'Name' and 'Age' column respectively.
for i in range(len(df)):
    print(df.loc[i, "Name"], df.loc[i, "Age"])

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using loc function :

Ankit 21
Amit 19
Aishwarya 20
Priyanka 18

  Method 3: Using iloc[] function of the DataFrame. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit'
                 'Aishwarya', 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce'
                   'Arts', 'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age',
                                 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using iloc function :\n")
  
# iterate through each row and select
# 0th and 2nd index column respectively.
for i in range(len(df)):
    print(df.iloc[i, 0], df.iloc[i, 2])

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using iloc function :

Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology
​

 Method 4: Using iterrows() method of the Dataframe. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit'
                 'Aishwarya', 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce',
                   'Arts', 'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age'
                                 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using iterrows() method :\n")
  
# iterate through each row and select
# 'Name' and 'Age' column respectively.
for index, row in df.iterrows():
    print(row["Name"], row["Age"])

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using iterrows() method :

Ankit 21
Amit 19
Aishwarya 20
Priyanka 18

  Method 5: Using itertuples() method of the Dataframe. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit', 'Aishwarya',
                 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce', 'Arts'
                   'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age'
                                 'Stream',
                                 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using itertuples() method :\n")
  
# iterate through each row and select
# 'Name' and 'Percentage' column respectively.
for row in df.itertuples(index=True, name='Pandas'):
    print(getattr(row, "Name"), getattr(row, "Percentage"))

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using itertuples() method :

Ankit 88
Amit 92
Aishwarya 95
Priyanka 70
​

  Method 6: Using apply() method of the Dataframe. 

Python3




# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit', 'Aishwarya',
                 'Priyanka'],
        'Age': [21, 19, 20, 18],
        'Stream': ['Math', 'Commerce', 'Arts',
                   'Biology'],
        'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream',
                                 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using apply function :\n")
  
# iterate through each row and concatenate
# 'Name' and 'Percentage' column respectively.
print(df.apply(lambda row: row["Name"] + " " + 
               str(row["Percentage"]), axis=1))

Output:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using apply function :

0        Ankit 88
1         Amit 92
2    Aishwarya 95
3     Priyanka 70
dtype: object

My Personal Notes arrow_drop_up
Last Updated : 24 Jun, 2022
Like Article
Save Article
Similar Reads
Related Tutorials