Skip to content
Related Articles

Related Articles

Improve Article
Saving a Pandas Dataframe as a CSV
  • Last Updated : 21 Aug, 2020

Pandas is an open source library which is built on top of NumPy library. It allows user for fast analysis, data cleaning & preparation of data efficiently. Pandas is fast and it has high-performance & productivity for users.

Most of the datasets you work with are called DataFrames. DataFrames is a 2-Dimensional labeled Data Structure with index for rows and columns, where each cell is used to store a value of any type. Basically, DataFrames are Dictionary based out of NumPy Arrays.

Let’s see how to save a Pandas DataFrame as a CSV file using to_csv() method.

Example #1: Save csv to working directory.




# importing pandas as pd 
import pandas as pd 
   
# list of name, degree, score
nme = ["aparna", "pankaj", "sudhir", "Geeku"]
deg = ["MBA", "BCA", "M.Tech", "MBA"]
scr = [90, 40, 80, 98]
   
# dictionary of lists 
dict = {'name': nme, 'degree': deg, 'score': scr} 
     
df = pd.DataFrame(dict)
  
# saving the dataframe
df.to_csv('file1.csv')

Output:

 
Example #2: Saving CSV without headers and index.






# importing pandas as pd 
import pandas as pd 
   
# list of name, degree, score
nme = ["aparna", "pankaj", "sudhir", "Geeku"]
deg = ["MBA", "BCA", "M.Tech", "MBA"]
scr = [90, 40, 80, 98]
   
# dictionary of lists 
dict = {'name': nme, 'degree': deg, 'score': scr} 
     
df = pd.DataFrame(dict)
  
# saving the dataframe
df.to_csv('file2.csv', header=False, index=False)

Output:

 
Example #3: Save csv file to a specified location.




# importing pandas as pd 
import pandas as pd 
   
# list of name, degree, score
nme = ["aparna", "pankaj", "sudhir", "Geeku"]
deg = ["MBA", "BCA", "M.Tech", "MBA"]
scr = [90, 40, 80, 98]
   
# dictionary of lists 
dict = {'name': nme, 'degree': deg, 'score': scr} 
     
df = pd.DataFrame(dict)
  
# saving the dataframe
df.to_csv(r'C:\Users\Admin\Desktop\file3.csv', index=False)

Output:

Example #4: Write a DataFrame to CSV file using tab separator.




import pandas as pd
import numpy as np
users = {'Name': ['Amit', 'Cody', 'Drew'],
     'Age': [20,21,25]}
df = pd.DataFrame(users, columns=['Name','Age'])#create DataFrame
print("Original DataFrame:")
print(df)
print('Data from Users.csv:')
df.to_csv('Users.csv', sep='\t', index=False,header=True)
new_df = pd.read_csv('Users.csv')
print(new_df)

Output:

Original DataFrame:
   Name  Age
0  Amit   20
1  Cody   21
2  Drew   25
Data from Users.csv:
  Name\tAge
0  Amit\t20
1  Cody\t21
2  Drew\t25

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :