How to export Pandas DataFrame to a CSV file?
Let us see how to export a Pandas DataFrame to a CSV file. We will be using the to_csv()
function to save a DataFrame as a CSV file.
DataFrame.to_csv()
Syntax : to_csv(parameters)
Parameters :
- path_or_buf : File path or object, if None is provided the result is returned as a string.
- sep : String of length 1. Field delimiter for the output file.
- na_rep : Missing data representation.
- float_format : Format string for floating point numbers.
- columns : Columns to write.
- header : If a list of strings is given it is assumed to be aliases for the column names.
- index : Write row names (index).
- index_label : Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used.
- mode : Python write mode, default ‘w’.
- encoding : A string representing the encoding to use in the output file.
- compression : Compression mode among the following possible values: {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}.
- quoting : Defaults to csv.QUOTE_MINIMAL.
- quotechar : String of length 1. Character used to quote fields.
- line_terminator : The newline character or character sequence to use in the output file.
- chunksize : Rows to write at a time.
- date_format : Format string for datetime objects.
- doublequote : Control quoting of quotechar inside a field.
- escapechar : String of length 1. Character used to escape sep and quotechar when appropriate.
- decimal : Character recognized as decimal separator. E.g. use ‘,’ for European data.
Returns : None or str
Example 1 :
# importing the module import pandas as pd # creating the DataFrame my_df = { 'Name' : [ 'Rutuja' , 'Anuja' ], 'ID' : [ 1 , 2 ], 'Age' : [ 20 , 19 ]} df = pd.DataFrame(my_df) # displaying the DataFrame print ( 'DataFrame:\n' , df) # saving the DataFrame as a CSV file gfg_csv_data = df.to_csv( 'GfG.csv' , index = True ) print ( '\nCSV String:\n' , gfg_csv_data) |
Output :
Before executing the code:
After executing the code:
We can clearly see the .csv file created.
Also, the output of the above code includes the index, as follows.
Example 2 : Converting to a CSV file without the index. If we wish not to include the index, then in the index
parameter assign the value False
.
# importing the module import pandas as pd # creating the DataFrame my_df = { 'Name' : [ 'Rutuja' , 'Anuja' ], 'ID' : [ 1 , 2 ], 'Age' : [ 20 , 19 ]} df = pd.DataFrame(my_df) # displaying the DataFrame print ( 'DataFrame:\n' , df) # saving the DataFrame as a CSV file gfg_csv_data = df.to_csv( 'GfG.csv' , index = False ) print ( '\nCSV String:\n' , gfg_csv_data) |
Output:
Example 3 : Converting to a CSV file without the header of the rows. If we wish not to include the header, then in the header
parameter assign the value False
.
# importing the module import pandas as pd # creating the DataFrame my_df = { 'Name' : [ 'Rutuja' , 'Anuja' ], 'ID' : [ 1 , 2 ], 'Age' : [ 20 , 19 ]} df = pd.DataFrame(my_df) # displaying the DataFrame print ( 'DataFrame:\n' , df) # saving the DataFrame as a CSV file gfg_csv_data = df.to_csv( 'GfG.csv' , header = False ) print ( '\nCSV String:\n' , gfg_csv_data) |
Output:
Please Login to comment...