In this article, we will learn how we can export a Pandas DataFrame to a CSV file by using the Pandas to_csv() method. By default, the to csv() method exports DataFrame to a CSV file with row index as the first column and comma as the delimiter.
Creating DataFrame to Export Pandas DataFrame to CSV
Python3
import pandas as pd
nme = [ "aparna" , "pankaj" , "sudhir" , "Geeku" ]
deg = [ "MBA" , "BCA" , "M.Tech" , "MBA" ]
scr = [ 90 , 40 , 80 , 98 ]
dict = { 'name' : nme, 'degree' : deg, 'score' : scr}
df = pd.DataFrame( dict )
print (df)
|
Output:
name degree score
0 aparna MBA 90
1 pankaj BCA 40
2 sudhir M.Tech 80
3 Geeku MBA 98
Export CSV to a working directory
Here, we simply export a Dataframe to a CSV file using df.to_csv().
Output:
Saving CSV without headers and index.
Here, we are saving the file with no header and no index number.
Python3
df.to_csv( 'file2.csv' , header = False , index = False )
|
Output:
Save the CSV file to a specified location
We can also, save our file at some specific location.
Python3
df.to_csv(r 'C:\Users\Admin\Desktop\file3.csv' )
|
Output:
Write a DataFrame to CSV file using tab separator
We can also save our file with some specific separate as we want. i.e, “\t” .
Python3
import pandas as pd
import numpy as np
users = { 'Name' : [ 'Amit' , 'Cody' , 'Drew' ],
'Age' : [ 20 , 21 , 25 ]}
df = pd.DataFrame(users, columns = [ 'Name' , 'Age' ])
print ( "Original DataFrame:" )
print (df)
print ( 'Data from Users.csv:' )
df.to_csv( 'Users.csv' , sep = '\t' , index = False ,header = True )
new_df = pd.read_csv( 'Users.csv' )
print (new_df)
|
Output:
Original DataFrame:
Name Age
0 Amit 20
1 Cody 21
2 Drew 25
Data from Users.csv:
Name\tAge
0 Amit\t20
1 Cody\t21
2 Drew\t25