Python | Create Test DataSets using Sklearn

Python’s Sklearn library provides a great sample dataset generator which will help you to create your own custom dataset. It’s fast and very easy to use. Following are the types of samples it provides.

For all the above methods you need to import sklearn.datasets.samples_generator.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing libraries
from sklearn.datasets.samples_generator
  
# matplotlib for ploting
from matplotlib import pyplot as plt 
from matplotlib import style

chevron_right




sklearn.datasets.make_blobs

filter_none

edit
close

play_arrow

link
brightness_4
code

# Creating Test DataSets using sklearn.datasets.make_blobs
from sklearn.datasets.samples_generator import make_blobs
from matplotlib import pyplot as plt 
from matplotlib import style
  
style.use("fivethirtyeight")
  
X, y = make_blobs(n_samples = 100, centers = 3
               cluster_std = 1, n_features = 2)
  
plt.scatter(X[:, 0], X[:, 1], s = 40, color = 'g')
plt.xlabel("X")
plt.ylabel("Y")
  
plt.show()
plt.clf()

chevron_right


Output:

make_blobs with 3 centers

sklearn.datasets.make_moon

filter_none

edit
close

play_arrow

link
brightness_4
code

# Creating Test DataSets using sklearn.datasets.make_moon
from sklearn.datasets.samples_generator import make_moon
from matplotlib import pyplot as plt 
from matplotlib import style
  
X, y = make_moons(n_samples = 1000, noise = 0.1)
plt.scatter(X[:, 0], X[:, 1], s = 40, color ='g')
plt.xlabel("X")
plt.ylabel("Y")
  
plt.show()
plt.clf()

chevron_right


Output:

make_moons with 1000 data points

sklearn.datasets.make_circle

filter_none

edit
close

play_arrow

link
brightness_4
code

# Creating Test DataSets using sklearn.datasets.make_circles
from sklearn.datasets.samples_generator import make_circles
from matplotlib import pyplot as plt 
from matplotlib import style
  
style.use("fivethirtyeight")
  
X, y = make_circles(n_samples = 100, noise = 0.02)
plt.scatter(X[:, 0], X[:, 1], s = 40, color ='g')
plt.xlabel("X")
plt.ylabel("Y")
  
plt.show()
plt.clf()

chevron_right


Output:

make _circle with 100 data points



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.




Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.