Skip to content
Related Articles

Related Articles

Cauchy’s Mean Value Theorem

View Discussion
Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 15 Apr, 2018
View Discussion
Improve Article
Save Article

Suppose f(x) and g(x) are 2 functions satisfying three conditions:

1) f(x), g(x) are continuous in the closed interval a <= x <= b

2) f(x), g(x) are differentiable in the open interval a < x < b and

3) g'(x) != 0 for all x belongs to the open interval a < x < b

Then according to Cauchy’s Mean Value Theorem there exists a point c in the open interval a < c < b such that:

[f(b) - f(a)] / [g(b) - g(a)] = f'(c) / g'(c)

The conditions (1) and (2) are exactly same as the first two conditions of Lagranges Mean Value Theorem for the functions individually. Lagranges mean value theorem is defined for one function but this is defined for two functions.

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!