Suppose
![Rendered by QuickLaTeX.com f:[a,b]\rightarrow R](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-d1f9eda16fbd75c67f4660eca194b23f_l3.png)
be a function satisfying these conditions:
1) f(x) is continuous in the closed interval a ≤ x ≤ b
2) f(x) is differentiable in the open interval a < x < b
Then according to Lagrange’s Theorem, there exists at least one point ‘c’ in the open interval (a, b) such that:

We can visualize Lagrange’s Theorem by the following figure

In simple words, Lagrange’s theorem says that if there is a path between two points A(a, f(a)) and B(b, f(a)) in a 2-D plain then there will be at least one point ‘c’ on the path such that the slope of the tangent at point ‘c’, i.e., (f ‘ (c)) is equal to the average slope of the path, i.e.,

Example: Verify mean value theorem for f(x) = x2 in interval [2,4].
Solution: First check if the function is continuous in the given closed interval, the answer is Yes. Then check for differentiability in the open interval (2,4), Yes it is differentiable.

f(2) = 4
and f(4) = 16

Mean value theorem states that there is a point c ∈ (2, 4) such that

But

which implies c = 3. Thus at c = 3 ∈ (2, 4), we have

This article has been contributed by Saurabh Sharma.
If you would like to contribute, please email us your interest at review-team@geeksforgeeks.org
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Level Up Your GATE Prep!
Embark on a transformative journey towards GATE success by choosing
Data Science & AI as your second paper choice with our specialized course. If you find yourself lost in the vast landscape of the GATE syllabus, our program is the compass you need.
Last Updated :
14 Sep, 2023
Like Article
Save Article